• Je něco špatně v tomto záznamu ?

Rotamer Dynamics: Analysis of Rotamers in Molecular Dynamics Simulations of Proteins

Y. Haddad, V. Adam, Z. Heger,

. 2019 ; 116 (11) : 2062-2072. [pub] 20190422

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025821
E-zdroje Online Plný text

NLK Cell Press Free Archives od 1960-01-01 do Před 1 rokem
Free Medical Journals od 1960 do Před 1 rokem
Freely Accessible Science Journals od 1960 do Před 12 měsíci
PubMed Central od 1960 do Před 1 rokem
Europe PubMed Central od 1960 do Před 1 rokem
Open Access Digital Library od 1960-09-01
Elsevier Open Access Journals od 2018-02-27 do 2023-06-20
Elsevier Open Archive Journals od 1960-09-01 do Před 1 rokem

Given by χ torsional angles, rotamers describe the side-chain conformations of amino acid residues in a protein based on the rotational isomers (hence the word rotamer). Constructed rotamer libraries, based on either protein crystal structures or dynamics studies, are the tools for classifying rotamers (torsional angles) in a way that reflect their frequency in nature. Rotamer libraries are routinely used in structure modeling and evaluation. In this perspective article, we would like to encourage researchers to apply rotamer analyses beyond their traditional use. Molecular dynamics (MD) of proteins highlight the in silico behavior of molecules in solution and thus can identify favorable side-chain conformations. In this article, we used simple computational tools to study rotamer dynamics (RD) in MD simulations. First, we isolated each frame in the MD trajectories in separate Protein Data Bank files via the cpptraj module in AMBER. Then, we extracted torsional angles via the Bio3D module in R language. The classification of torsional angles was also done in R according to the penultimate rotamer library. RD analysis is useful for various applications such as protein folding, study of rotamer-rotamer relationship in protein-protein interaction, real-time correlation between secondary structures and rotamers, study of flexibility of side chains in binding site for molecular docking preparations, use of RD as guide in functional analysis and study of structural changes caused by mutations, providing parameters for improving coarse-grained MD accuracy and speed, and many others. Major challenges facing RD to emerge as a new scientific field involve the validation of results via easy, inexpensive wet-lab methods. This realm is yet to be explored.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025821
003      
CZ-PrNML
005      
20201222155452.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bpj.2019.04.017 $2 doi
035    __
$a (PubMed)31084902
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Haddad, Yazan $u Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
245    10
$a Rotamer Dynamics: Analysis of Rotamers in Molecular Dynamics Simulations of Proteins / $c Y. Haddad, V. Adam, Z. Heger,
520    9_
$a Given by χ torsional angles, rotamers describe the side-chain conformations of amino acid residues in a protein based on the rotational isomers (hence the word rotamer). Constructed rotamer libraries, based on either protein crystal structures or dynamics studies, are the tools for classifying rotamers (torsional angles) in a way that reflect their frequency in nature. Rotamer libraries are routinely used in structure modeling and evaluation. In this perspective article, we would like to encourage researchers to apply rotamer analyses beyond their traditional use. Molecular dynamics (MD) of proteins highlight the in silico behavior of molecules in solution and thus can identify favorable side-chain conformations. In this article, we used simple computational tools to study rotamer dynamics (RD) in MD simulations. First, we isolated each frame in the MD trajectories in separate Protein Data Bank files via the cpptraj module in AMBER. Then, we extracted torsional angles via the Bio3D module in R language. The classification of torsional angles was also done in R according to the penultimate rotamer library. RD analysis is useful for various applications such as protein folding, study of rotamer-rotamer relationship in protein-protein interaction, real-time correlation between secondary structures and rotamers, study of flexibility of side chains in binding site for molecular docking preparations, use of RD as guide in functional analysis and study of structural changes caused by mutations, providing parameters for improving coarse-grained MD accuracy and speed, and many others. Major challenges facing RD to emerge as a new scientific field involve the validation of results via easy, inexpensive wet-lab methods. This realm is yet to be explored.
650    _2
$a isomerie $7 D007536
650    12
$a simulace molekulární dynamiky $7 D056004
650    _2
$a konformace proteinů $7 D011487
650    _2
$a proteiny $x chemie $7 D011506
650    12
$a rotace $7 D012399
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Adam, Vojtech $u Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Heger, Zbynek $u Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic. Electronic address: heger@mendelu.cz.
773    0_
$w MED00000774 $t Biophysical journal $x 1542-0086 $g Roč. 116, č. 11 (2019), s. 2062-2072
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31084902 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222155448 $b ABA008
999    __
$a ok $b bmc $g 1599966 $s 1116507
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 116 $c 11 $d 2062-2072 $e 20190422 $i 1542-0086 $m Biophysical journal $n Biophys J $x MED00000774
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace