-
Je něco špatně v tomto záznamu ?
Rotamer Dynamics: Analysis of Rotamers in Molecular Dynamics Simulations of Proteins
Y. Haddad, V. Adam, Z. Heger,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
NLK
Cell Press Free Archives
od 1960-01-01 do Před 1 rokem
Free Medical Journals
od 1960 do Před 1 rokem
Freely Accessible Science Journals
od 1960 do Před 12 měsíci
PubMed Central
od 1960 do Před 1 rokem
Europe PubMed Central
od 1960 do Před 1 rokem
Open Access Digital Library
od 1960-09-01
Elsevier Open Access Journals
od 2018-02-27 do 2023-06-20
Elsevier Open Archive Journals
od 1960-09-01 do Před 1 rokem
- MeSH
- isomerie MeSH
- konformace proteinů MeSH
- proteiny chemie MeSH
- rotace * MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Given by χ torsional angles, rotamers describe the side-chain conformations of amino acid residues in a protein based on the rotational isomers (hence the word rotamer). Constructed rotamer libraries, based on either protein crystal structures or dynamics studies, are the tools for classifying rotamers (torsional angles) in a way that reflect their frequency in nature. Rotamer libraries are routinely used in structure modeling and evaluation. In this perspective article, we would like to encourage researchers to apply rotamer analyses beyond their traditional use. Molecular dynamics (MD) of proteins highlight the in silico behavior of molecules in solution and thus can identify favorable side-chain conformations. In this article, we used simple computational tools to study rotamer dynamics (RD) in MD simulations. First, we isolated each frame in the MD trajectories in separate Protein Data Bank files via the cpptraj module in AMBER. Then, we extracted torsional angles via the Bio3D module in R language. The classification of torsional angles was also done in R according to the penultimate rotamer library. RD analysis is useful for various applications such as protein folding, study of rotamer-rotamer relationship in protein-protein interaction, real-time correlation between secondary structures and rotamers, study of flexibility of side chains in binding site for molecular docking preparations, use of RD as guide in functional analysis and study of structural changes caused by mutations, providing parameters for improving coarse-grained MD accuracy and speed, and many others. Major challenges facing RD to emerge as a new scientific field involve the validation of results via easy, inexpensive wet-lab methods. This realm is yet to be explored.
Central European Institute of Technology Brno University of Technology Brno Czech Republic
Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025821
- 003
- CZ-PrNML
- 005
- 20201222155452.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bpj.2019.04.017 $2 doi
- 035 __
- $a (PubMed)31084902
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Haddad, Yazan $u Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
- 245 10
- $a Rotamer Dynamics: Analysis of Rotamers in Molecular Dynamics Simulations of Proteins / $c Y. Haddad, V. Adam, Z. Heger,
- 520 9_
- $a Given by χ torsional angles, rotamers describe the side-chain conformations of amino acid residues in a protein based on the rotational isomers (hence the word rotamer). Constructed rotamer libraries, based on either protein crystal structures or dynamics studies, are the tools for classifying rotamers (torsional angles) in a way that reflect their frequency in nature. Rotamer libraries are routinely used in structure modeling and evaluation. In this perspective article, we would like to encourage researchers to apply rotamer analyses beyond their traditional use. Molecular dynamics (MD) of proteins highlight the in silico behavior of molecules in solution and thus can identify favorable side-chain conformations. In this article, we used simple computational tools to study rotamer dynamics (RD) in MD simulations. First, we isolated each frame in the MD trajectories in separate Protein Data Bank files via the cpptraj module in AMBER. Then, we extracted torsional angles via the Bio3D module in R language. The classification of torsional angles was also done in R according to the penultimate rotamer library. RD analysis is useful for various applications such as protein folding, study of rotamer-rotamer relationship in protein-protein interaction, real-time correlation between secondary structures and rotamers, study of flexibility of side chains in binding site for molecular docking preparations, use of RD as guide in functional analysis and study of structural changes caused by mutations, providing parameters for improving coarse-grained MD accuracy and speed, and many others. Major challenges facing RD to emerge as a new scientific field involve the validation of results via easy, inexpensive wet-lab methods. This realm is yet to be explored.
- 650 _2
- $a isomerie $7 D007536
- 650 12
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a konformace proteinů $7 D011487
- 650 _2
- $a proteiny $x chemie $7 D011506
- 650 12
- $a rotace $7 D012399
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Adam, Vojtech $u Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
- 700 1_
- $a Heger, Zbynek $u Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic. Electronic address: heger@mendelu.cz.
- 773 0_
- $w MED00000774 $t Biophysical journal $x 1542-0086 $g Roč. 116, č. 11 (2019), s. 2062-2072
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31084902 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155448 $b ABA008
- 999 __
- $a ok $b bmc $g 1599966 $s 1116507
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 116 $c 11 $d 2062-2072 $e 20190422 $i 1542-0086 $m Biophysical journal $n Biophys J $x MED00000774
- LZP __
- $a Pubmed-20201125