Long-term contamination by non-native fish assemblages in a Neotropical floodplain

. 2024 ; 19 (11) : e0311018. [epub] 20241111

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39527515

Biological invasions are a major threat to biodiversity in species-rich regions. Therefore, it is important to understand mechanisms behind the long-term establishment of non-native fish species in aquatic environments in the Neotropical region. Here, we associated fish biomass, species richness, and the proportion of non-native species (contamination and Kempton's indices) to quantify the non-native pressure over fish biodiversity in lakes and rivers of the Parana River floodplain, seasonally, from 2000 to 2017. We divided species into native and non-native assemblages sampled in spatio-temporal gradients. Temporal trends were examined using linear regressions and generalised additive models. Fish biomass in gillnets increased for both native and non-native fish species, but their Kempton indices were inversely correlated. Extinction of native species occurred locally with biotic differentiation of non-native species in lakes, rivers, and ecosystem contamination. A constant increase in fish biomass resulted in overwhelming biodiversity of non-natives at the end of the time series evaluated. Native biotic resistance to introductions was not detected in deterministic trends. The observed patterns were consistent with previous studies showing native biotic homogenisation and extinction of species in response to biological invasions, landscape fragmentation, and riverine impoundments. Increases in abundance and species richness of non-native fish were the biodiversity drivers that resulted in non-native species outweighing native species in the Parana floodplain.

Zobrazit více v PubMed

Loreau M. Biodiversity and ecosystem functioning: recent theoretical advances. Oikos. 2000;91: 3–17. doi: 10.1034/j.1600-0706.2000.910101.x DOI

Tilman D, Isbell F, Cowles JM. Biodiversity and Ecosystem Functioning. Annu Rev Ecol Evol Syst. 2014;45: 471–493. doi: 10.1146/annurev-ecolsys-120213-091917 DOI

Odum EP. The Strategy of Ecosystem Development. Science (80-). 1969;164: 262–270. doi: 10.1126/science.164.3877.262 PubMed DOI

Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, et al.. Biodiversity loss and its impact on humanity. Nature. 2012;489: 326–326. doi: 10.1038/nature11148 PubMed DOI

Duffy JE. Why biodiversity is important to the functioning of real-world ecosystems. Front Ecol Environ. 2009;7: 437–444. doi: 10.1890/070195 DOI

Gough L, Grace JB, Taylor KL. The Relationship between Species Richness and Community Biomass: The Importance of Environmental Variables. Oikos. 1994;70: 271. doi: 10.2307/3545638 DOI

Maureaud A, Hodapp D, van Denderen PD, Hillebrand H, Gislason H, Spaanheden Dencker T, et al.. Biodiversity–ecosystem functioning relationships in fish communities: biomass is related to evenness and the environment, not to species richness. Proc R Soc B Biol Sci. 2019;286: 20191189. doi: 10.1098/rspb.2019.1189 PubMed DOI PMC

Lyons KG, Brigham CA, Traut BH, Schwartz MW. Rare Species and Ecosystem Functioning. 2005; 1019–1024. doi: 10.1111/j.1523-1739.2005.00106.x DOI

Naeem S, Li S. Biodiversity enhances ecosystem reliability. Nature. 1997;390: 507–509. doi: 10.1038/37348 DOI

Lockwood JL, Cassey P, Blackburn TM. The more you introduce the more you get: The role of colonization pressure and propagule pressure in invasion ecology. Divers Distrib. 2009. doi: 10.1111/j.1472-4642.2009.00594.x DOI

Stohlgren TJ, Barnett DT, Kartesz JT. The Rich Get Richer: Patterns of Plant Invasions in the United States. Front Ecol Environ. 2003;1: 11. doi: 10.2307/3867959 DOI

Richter BD, Baumgartner J V., Powell J, Braun DP. A Method for Assessing Hydrologic Alteration within Ecosystems. Conserv Biol. 1996;10: 1163–1174. doi: 10.1046/j.1523-1739.1996.10041163.x DOI

Olden JD, Rooney TP. On defining and quantifying biotic homogenization. Glob Ecol Biogeogr. 2006;15: 113–120. doi: 10.1111/j.1466-822X.2006.00214.x DOI

McKinney ML, Lockwood JL. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol. 1999;14: 450–453. doi: 10.1016/s0169-5347(99)01679-1 Available: http://www.sciencedirect.com/science/article/pii/S0169534799016791 PubMed DOI

Ricciardi A, Blackburn TM, Carlton JT, Dick JTA, Hulme PE, Iacarella JC, et al.. Invasion Science: A Horizon Scan of Emerging Challenges and Opportunities. Trends Ecol Evol. 2017;32: 464–474. doi: 10.1016/j.tree.2017.03.007 PubMed DOI

Costello MJ, May RM, Stork NE. Can We Name Earth’s Species Before They Go Extinct? Science (80-). 2013;339: 413–416. doi: 10.1126/science.1230318 PubMed DOI

Bezerra LAV, Ribeiro VM, Freitas MO, Kaufman L, Padial AA, Vitule JRS. Benthification, biotic homogenization behind the trophic downgrading in altered ecosystems. Ecosphere. 2019;10: e02757. doi: 10.1002/ecs2.2757 DOI

Simberloff D, Holle B Von. Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions. 1999; 21–32. doi: 10.1023/a:1010086329619 DOI

Bezerra LAV, Freitas MO, Daga VS, Occhi TVT, Faria L, Costa APL, et al.. A network meta‐analysis of threats to South American fish biodiversity. Fish Fish. 2019; faf.12365. doi: 10.1111/faf.12365 DOI

Moi DA, Alves DC, Figueiredo BRS, Antiqueira PAP, Teixeira de Mello F, Jeppesen E, et al.. Non-native fishes homogenize native fish communities and reduce ecosystem multifunctionality in tropical lakes over 16 years. Sci Total Environ. 2021;769: 144524. doi: 10.1016/j.scitotenv.2020.144524 PubMed DOI

Magalhães ALB, Daga VS, Bezerra LA V., Vitule JRS, Jacobi CM, Silva LGM. All the colors of the world: biotic homogenization-differentiation dynamics of freshwater fish communities on demand of the Brazilian aquarium trade. Hydrobiologia. 2020;847: 3897–3915. doi: 10.1007/s10750-020-04307-w DOI

Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature. 2001;412: 72–76. doi: 10.1038/35083573 PubMed DOI

Spooner DE, Vaughn CC. Species richness and temperature influence mussel biomass: a partitioning approach applied to natural communities. Ecology. 2009;90: 781–790. doi: 10.1890/08-0966.1 PubMed DOI

Ceschin F, Bini LM, Padial AA. Correlates of fish and aquatic macrophyte beta diversity in the Upper Paraná River floodplain. Hydrobiologia. 2018;805: 377–389. doi: 10.1007/s10750-017-3325-x DOI

Vitule JRS, Skóra F, Abilhoa V. Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Divers Distrib. 2012;18: 111–120. doi: 10.1111/j.1472-4642.2011.00821.x DOI

Júlio Júnior HF, Tós CD, Agostinho ÂA, Pavanelli CS. A massive invasion of fish species after eliminating a natural barrier in the upper rio Paraná basin. Neotrop Ichthyol. 2009;7: 709–718. doi: 10.1590/S1679-62252009000400021 DOI

Taylor CM, Miyazono S, Cheek CA, Edwards RJ, Patiño R. The spatial scale of homogenisation and differentiation in Chihuahuan Desert fish assemblages. Freshw Biol. 2019. doi: 10.1111/fwb.13211 DOI

Pelicice FM, Latini JD, Agostinho AA. Fish fauna disassembly after the introduction of a voracious predator: main drivers and the role of the invader’s demography. Hydrobiologia. 2015;746: 271–283. doi: 10.1007/s10750-014-1911-8 DOI

Agostinho A, Pelicice F, Gomes L. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian J Biol. 2008;68: 1119–1132. doi: 10.1590/s1519-69842008000500019 PubMed DOI

Gallardo B, Clavero M, Sánchez MI, Vilà M. Global ecological impacts of invasive species in aquatic ecosystems. Glob Chang Biol. 2016;22: 151–163. doi: 10.1111/gcb.13004 PubMed DOI

Agostinho AA, Gomes LC, Veríssimo S, K. Okada E. Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Rev Fish Biol Fish. 2004;14: 11–19. doi: 10.1007/s11160-004-3551-y DOI

Oliveira AG, Suzuki HI, Gomes LC, Agostinho AA. Interspecific variation in migratory fish recruitment in the Upper Paraná River: effects of the duration and timing of floods. Environ Biol Fishes. 2015;98: 1327–1337. doi: 10.1007/s10641-014-0361-5 DOI

Padial AA, Ceschin F, Declerck SAJ, De Meester L, Bonecker CC, Lansac-Tôha FA, et al.. Dispersal Ability Determines the Role of Environmental, Spatial and Temporal Drivers of Metacommunity Structure. Guichard F, editor. PLoS One. 2014;9: e111227. doi: 10.1371/journal.pone.0111227 PubMed DOI PMC

Pereira LS, Tencatt LFC, Dias RM, de Oliveira AG, Agostinho AA. Effects of long and short flooding years on the feeding ecology of piscivorous fish in floodplain river systems. Hydrobiologia. 2017;795: 65–80. doi: 10.1007/s10750-017-3115-5 DOI

Forneck SC, Dutra FM, Zacarkim CE, Cunico AM. Invasion risks by non-native freshwater fishes due to aquaculture activity in a Neotropical stream. Hydrobiologia. 2016;773: 193–205. doi: 10.1007/s10750-016-2699-5 DOI

Garcia DAZ, Magalhães ALB, Vitule JRS, Casimiro ACR, Lima-Junior DP, Cunico AM, et al.. The same old mistakes in aquaculture: the newly-available striped catfish Pangasianodon hypophthalmus is on its way to putting Brazilian freshwater ecosystems at risk. Biodivers Conserv. 2018;27: 3545–3558. doi: 10.1007/s10531-018-1603-1 DOI

dos Santos DA, Hoeinghaus DJ, Gomes LC. Spatial scales and the invasion paradox: a test using fish assemblages in a Neotropical floodplain. Hydrobiologia. 2018;817: 121–131. doi: 10.1007/s10750-018-3531-1 DOI

Thomaz SM, Bini LM, Bozelli RL. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia. 2007;579: 1–13. doi: 10.1007/s10750-006-0285-y DOI

Padial AA, Siqueira T, Heino J, Vieira LCG, Bonecker CC, Lansac-Tôha FA, et al.. Relationships between multiple biological groups and classification schemes in a Neotropical floodplain. Ecol Indic. 2012;13: 55–65. doi: 10.1016/j.ecolind.2011.05.007 DOI

Lyons KG, Schwartz MW. Rare species loss alters ecosystem function—Invasion resistance. Ecol Lett. 2001. doi: 10.1046/j.1461-0248.2001.00235.x DOI

Ota RR, Deprá G de C, Graça WJ da, Pavanelli CS. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotrop Ichthyol. 2018;16: 1–111. doi: 10.1590/1982-0224-20170094 DOI

Alves CBM, Vieira F, Magalhães ALB, Brito MFG. Impacts of Non-Native Fish Species in Minas Gerais, Brazil: Present Situation and Prospects. Ecological and Genetic Implications of Aquaculture Activities. Dordrecht: Springer Netherlands; 2007. pp. 291–314. doi: 10.1007/978-1-4020-6148-6_16 DOI

Kempton RA, Taylor LR. Models and statistics for species diversity. Nature. 1976;262: 818–20. doi: 10.1038/262818a0 PubMed DOI

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2020. Available: https://www.r-project.org/

Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al.. Welcome to the Tidyverse. J Open Source Softw. 2019;4: 1686. doi: 10.21105/joss.01686 DOI

Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B (Statistical Methodol. 2011;73: 3–36. doi: 10.1111/j.1467-9868.2010.00749.x DOI

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. {nlme}: Linear and Nonlinear Mixed Effects Models. 2020. Available: https://cran.r-project.org/package=nlme

Simpson GL. Modelling palaeoecological time series using generalized additive models. Model Palaeoecol time Ser using Gen Addit Model. 2018; 322248. doi: 10.1101/322248 DOI

Hollander M, Wolfe DA. Nonparametric Statistical Methods BT—Nonparametric Statistical Methods. In: John Wiley & Sons, editor. Nonparametric Statistical Methods. New York, NY; 1973. pp. 185–194.

Wu X, Wang X, Tang Z, Shen Z, Zheng C, Xia X, et al.. The relationship between species richness and biomass changes from boreal to subtropical forests in China. Ecography (Cop). 2015;38: 602–613. doi: 10.1111/ecog.00940 DOI

Ainsworth CH, Pitcher T. Modifying Kempton’s species diversity index for use with ecosystem simulation models. Ecol Indic. 2006;6: 623–630. doi: 10.1016/j.ecolind.2005.08.024 DOI

Lövei GL, Lewinsohn TM. Megadiverse developing countries face huge risks from invasives. Trends in Ecology and Evolution. 2012. pp. 3–4. doi: 10.1016/j.tree.2011.10.009 PubMed DOI

Bezerra LAV, Angelini R, Vitule JRS, Coll M, Sánchez-Botero JI. Food web changes associated with drought and invasive species in a tropical semiarid reservoir. Hydrobiologia. 2018;817: 475–489. doi: 10.1007/s10750-017-3432-8 DOI

Oliveira AG, Baumgartner MT, Gomes LC, Dias RM, Agostinho AA. Long-term effects of flow regulation by dams simplify fish functional diversity. Freshw Biol. 2018;63: 293–305. doi: 10.1111/fwb.13064 DOI

Angelini R, de Morais RJ, Catella AC, Resende EK, Libralato S. Aquatic food webs of the oxbow lakes in the Pantanal: A new site for fisheries guaranteed by alternated control? Ecol Modell. 2013;253: 82–96. doi: 10.1016/j.ecolmodel.2013.01.001 DOI

Casimiro ACR, Garcia DAZ, Vidotto-Magnoni AP, Britton JR, Agostinho AA, De Almeida FS, et al.. Escapes of non-native fish from flooded aquaculture facilities: the case of Paranapanema River, southern Brazil. Zoologia. 2018;35: 1–6. doi: 10.3897/zoologia.35.e14638 DOI

Britton JR, Orsi MLML. Non-native fish in aquaculture and sport fishing in Brazil: economic benefits versus risks to fish diversity in the upper River Paraná Basin. Rev Fish Biol Fish. 2012;22: 555–565. doi: 10.1007/s11160-012-9254-x DOI

Agostinho AA, Gomes LC, Santos NCL, Ortega JCG, Pelicice FM. Fish assemblages in Neotropical reservoirs: Colonization patterns, impacts and management. Fish Res. 2016;173: 26–36. doi: 10.1016/j.fishres.2015.04.006 DOI

Nobile AB, Zanatta AS, Brandão H, Zica EOP, Lima FP, Freitas-Souza D, et al.. Cage fish farm act as a source of changes in the fish community of a Neotropical reservoir. Aquaculture. 2018;495: 780–785. doi: 10.1016/j.aquaculture.2018.06.053 DOI

Prado FD do, Hashimoto DT, Senhorini JA, Foresti F, Porto-Foresti F. Detection of hybrids and genetic introgression in wild stocks of two catfish species (Siluriformes: Pimelodidae): The impact of hatcheries in Brazil. Fish Res. 2012;125–126: 300–305. doi: 10.1016/j.fishres.2012.02.030 DOI

Prchalová M, Kubečka J, Říha M, Litvín R, Čech M, Frouzová J, et al.. Overestimation of percid fishes (Percidae) in gillnet sampling. Fish Res. 2008;91: 79–87. doi: 10.1016/j.fishres.2007.11.009 DOI

Carniatto N, Fugi R, Thomaz SM, Cunha ER. The invasive submerged macrophyte Hydrilla verticillata as a foraging habitat for small-sized fish. Nat Conserv. 2014;12: 30–35. doi: 10.4322/natcon.2014.006 DOI

Yofukuji KY, Cardozo ALP, Quirino BA, Aleixo MHF, Fugi R. Macrophyte diversity alters invertebrate community and fish diet. Hydrobiologia. 2021;848: 913–927. doi: 10.1007/s10750-020-04501-w DOI

Agostinho AA, Thomaz SM, Gomes LC, Baltar SLSMA. Influence of the macrophyte Eichhornia azurea on fish assemblage of the Upper Paraná River floodplain (Brazil). Aquat Ecol. 2007;41: 611–619. doi: 10.1007/s10452-007-9122-2 DOI

Sih A, Bolnick DI, Luttbeg B, Orrock JL, Peacor SD, Pintor LM, et al.. Predator-prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos. 2010;119: 610–621. doi: 10.1111/j.1600-0706.2009.18039.x DOI

Skóra F, Abilhoa V, Padial AA, Vitule JRS. Darwin’s hypotheses to explain colonization trends: evidence from a quasi -natural experiment and a new conceptual model. Rejmanek M, editor. Divers Distrib. 2015;21: 583–594. doi: 10.1111/ddi.12308 DOI

Ribas LG dos S, Cunha ER, Vitule JRS, Mormul RP, Thomaz SM, Padial AA. Biotic resistance by snails and fish to an exotic invasive aquatic plant. Freshw Biol. 2017;62: 1266–1275. doi: 10.1111/fwb.12943 DOI

Cunha ER, Winemiller KO, da Silva JCB, Lopes TM, Gomes LC, Thomaz SM, et al.. α and β diversity of fishes in relation to a gradient of habitat structural complexity supports the role of environmental filtering in community assembly. Aquat Sci. 2019;81: 38. doi: 10.1007/s00027-019-0634-3 DOI

Agostinho AA, Bonecker CC, Gomes LC. Effects of water quantity on connectivity: the case of the upper Paraná River floodplain. Ecohydrol Hydrobiol. 2009;9: 99–113. doi: 10.2478/v10104-009-0040-x DOI

Leitão RP, Zuanon J, Villéger S, Williams SE, Baraloto C, Fortunel C, et al.. Rare species contribute disproportionately to the functional structure of species assemblages. Proc R Soc B Biol Sci. 2016;283: 1–9. doi: 10.1098/rspb.2016.0084 PubMed DOI PMC

Castro RMC, Polaz CNM. Small-sized fish: the largest and most threatened portion of the megadiverse neotropical freshwater fish fauna. Biota Neotrop. 2020;20. doi: 10.1590/1676-0611-bn-2018-0683 DOI

Gaston KJ, Kunin WE. Rare—common differences: an overview. The Biology of Rarity. Dordrecht: Springer Netherlands; 1997. pp. 12–29. doi: 10.1007/978-94-011-5874-9_2 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...