• Je něco špatně v tomto záznamu ?

Anodic formation and biomedical properties of hafnium-oxide nanofilms

Z. Fohlerova, A. Mozalev,

. 2019 ; 7 (14) : 2300-2310. [pub] 20190306

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025888

Hafnium dioxide (HfO2) is attracting attention for bio-related applications due to its good cytocompatibility, high density, and resistance to corrosion and mechanical damage. Here we synthesize two types of hafnium-oxide thin films on substrates via self-organized electrochemical anodization: (1) an array of hierarchically structured nanorods anchored to a thin oxide layer and (2) a microscopically flat oxide film. The nanostructured film is composed of a unique mixture of HfO2, suboxide Hf2O3, and oxide-hydroxide compound HfO2·nH2O whereas the flat film is mainly HfO2. In vitro interaction of the two films with MG-63 osteoblast-like cells and Gram-negative E. coli bacteria is studied for the first time to assess the potential of the films for biomedical application. Both films reveal good cytocompatibility and affinity for proteins, represented by fibronectin and especially albumin, which is absorbed in a nine times larger amount. The morphology and specific surface chemistry of the nanostructured film cause a two-fold enhanced antibacterial effect, better cell attachment, significantly improved proliferation of cells, five-fold rise in the cellular Young's modulus, slightly stronger production of reactive oxygen species, and formation of cell clusters. Compared with the flat film, the nanostructured one features the weakening of AFM-measured adhesion force at the cell/surface interface, probably caused by partially lifting the nanorods from the substrate due to the strong contact with cells. The present findings deepen the understanding of biological processes at the living cell/metal-oxide interface, underlying the role of surface chemistry and the impact of nanostructuring at the nanoscale.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025888
003      
CZ-PrNML
005      
20201222154136.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1039/c8tb03180k $2 doi
035    __
$a (PubMed)32254678
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Fohlerova, Zdenka $u CEITEC - Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic. zdenka.fohlerova@ceitec.vutbr.cz.
245    10
$a Anodic formation and biomedical properties of hafnium-oxide nanofilms / $c Z. Fohlerova, A. Mozalev,
520    9_
$a Hafnium dioxide (HfO2) is attracting attention for bio-related applications due to its good cytocompatibility, high density, and resistance to corrosion and mechanical damage. Here we synthesize two types of hafnium-oxide thin films on substrates via self-organized electrochemical anodization: (1) an array of hierarchically structured nanorods anchored to a thin oxide layer and (2) a microscopically flat oxide film. The nanostructured film is composed of a unique mixture of HfO2, suboxide Hf2O3, and oxide-hydroxide compound HfO2·nH2O whereas the flat film is mainly HfO2. In vitro interaction of the two films with MG-63 osteoblast-like cells and Gram-negative E. coli bacteria is studied for the first time to assess the potential of the films for biomedical application. Both films reveal good cytocompatibility and affinity for proteins, represented by fibronectin and especially albumin, which is absorbed in a nine times larger amount. The morphology and specific surface chemistry of the nanostructured film cause a two-fold enhanced antibacterial effect, better cell attachment, significantly improved proliferation of cells, five-fold rise in the cellular Young's modulus, slightly stronger production of reactive oxygen species, and formation of cell clusters. Compared with the flat film, the nanostructured one features the weakening of AFM-measured adhesion force at the cell/surface interface, probably caused by partially lifting the nanorods from the substrate due to the strong contact with cells. The present findings deepen the understanding of biological processes at the living cell/metal-oxide interface, underlying the role of surface chemistry and the impact of nanostructuring at the nanoscale.
650    _2
$a biokompatibilní materiály $x farmakologie $7 D001672
650    _2
$a buněčné linie $7 D002460
650    _2
$a Escherichia coli $x účinky léků $7 D004926
650    12
$a hafnium $x chemie $x farmakologie $7 D006195
650    _2
$a lidé $7 D006801
650    _2
$a nanostruktury $x chemie $x terapeutické užití $7 D049329
650    _2
$a osteoblasty $x cytologie $x účinky léků $7 D010006
650    12
$a oxidy $x chemie $x farmakologie $7 D010087
650    _2
$a povrchové vlastnosti $7 D013499
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Mozalev, Alexander
773    0_
$w MED00200167 $t Journal of materials chemistry. B $x 2050-7518 $g Roč. 7, č. 14 (2019), s. 2300-2310
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32254678 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222154131 $b ABA008
999    __
$a ok $b bmc $g 1600033 $s 1116574
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 7 $c 14 $d 2300-2310 $e 20190306 $i 2050-7518 $m Journal of materials chemistry. B $n J Mater Chem B $x MED00200167
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...