-
Je něco špatně v tomto záznamu ?
Quantum biology revisited
J. Cao, RJ. Cogdell, DF. Coker, HG. Duan, J. Hauer, U. Kleinekathöfer, TLC. Jansen, T. Mančal, RJD. Miller, JP. Ogilvie, VI. Prokhorenko, T. Renger, HS. Tan, R. Tempelaar, M. Thorwart, E. Thyrhaug, S. Westenhoff, D. Zigmantas,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., přehledy
NLK
Directory of Open Access Journals
od 2015
Freely Accessible Science Journals
od 2015
PubMed Central
od 2015
Europe PubMed Central
od 2015
Open Access Digital Library
od 2015-01-01
Open Access Digital Library
od 2015-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2015
PubMed
32284982
DOI
10.1126/sciadv.aaz4888
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- fotosyntéza * MeSH
- kvantová teorie * MeSH
- přenos energie * MeSH
- spektrální analýza MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- teoretické modely MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Photosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that interexciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow.
Chemical Physics Box 124 Lund University 22100 Lund Sweden
Department of Chemistry and Molecular Biology University of Gothenburg Gothenburg 40530 Sweden
Department of Chemistry Boston University 590 Commonwealth Avenue Boston MA 02215 USA
Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
Department of Physics and Earth Science Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
Department of Physics University of Michigan Ann Arbor MI 48108 USA
Faculty of Mathematics and Physics Charles University Ke Karlovu 5 CZ 12116 Prague 2 Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20028282
- 003
- CZ-PrNML
- 005
- 20210114153420.0
- 007
- ta
- 008
- 210105s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1126/sciadv.aaz4888 $2 doi
- 035 __
- $a (PubMed)32284982
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Cao, Jianshu $u Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
- 245 10
- $a Quantum biology revisited / $c J. Cao, RJ. Cogdell, DF. Coker, HG. Duan, J. Hauer, U. Kleinekathöfer, TLC. Jansen, T. Mančal, RJD. Miller, JP. Ogilvie, VI. Prokhorenko, T. Renger, HS. Tan, R. Tempelaar, M. Thorwart, E. Thyrhaug, S. Westenhoff, D. Zigmantas,
- 520 9_
- $a Photosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that interexciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow.
- 650 _2
- $a algoritmy $7 D000465
- 650 12
- $a přenos energie $7 D004735
- 650 _2
- $a světlosběrné proteinové komplexy $x metabolismus $7 D045342
- 650 _2
- $a teoretické modely $7 D008962
- 650 12
- $a fotosyntéza $7 D010788
- 650 12
- $a kvantová teorie $7 D011789
- 650 _2
- $a spektrální analýza $7 D013057
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Cogdell, Richard J $u Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow G12 8QQ, UK.
- 700 1_
- $a Coker, David F $u Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA.
- 700 1_
- $a Duan, Hong-Guang $u Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany. I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany. The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany.
- 700 1_
- $a Hauer, Jürgen $u Technische Universität München, Dynamische Spektroskopien, Fakultät für Chemie, Lichtenbergstr. 4, 85748 Garching, Germany, and Photonics Institute, TU Wien, 1040 Vienna, Austria.
- 700 1_
- $a Kleinekathöfer, Ulrich $u Department of Physics and Earth Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
- 700 1_
- $a Jansen, Thomas L C $u Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands.
- 700 1_
- $a Mančal, Tomáš $u Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic.
- 700 1_
- $a Miller, R J Dwayne $u Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany. The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany. Departments of Chemistry and Physics, University of Toronto, Toronto, ON M5S 3H6, Canada.
- 700 1_
- $a Ogilvie, Jennifer P $u Department of Physics, University of Michigan, Ann Arbor, MI 48108, USA.
- 700 1_
- $a Prokhorenko, Valentyn I $u Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany.
- 700 1_
- $a Renger, Thomas $u Institute of Theoretical Physics, Department of Theoretical Biophysics, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria.
- 700 1_
- $a Tan, Howe-Siang $u Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
- 700 1_
- $a Tempelaar, Roel $u Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA.
- 700 1_
- $a Thorwart, Michael $u I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany. The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany.
- 700 1_
- $a Thyrhaug, Erling $u Technische Universität München, Dynamische Spektroskopien, Fakultät für Chemie, Lichtenbergstr. 4, 85748 Garching, Germany, and Photonics Institute, TU Wien, 1040 Vienna, Austria.
- 700 1_
- $a Westenhoff, Sebastian $u Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden.
- 700 1_
- $a Zigmantas, Donatas $u Chemical Physics, Box 124, Lund University, 22100 Lund, Sweden.
- 773 0_
- $w MED00188818 $t Science advances $x 2375-2548 $g Roč. 6, č. 14 (2020), s. eaaz4888
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32284982 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114153417 $b ABA008
- 999 __
- $a ok $b bmc $g 1608617 $s 1119462
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 6 $c 14 $d eaaz4888 $e 20200403 $i 2375-2548 $m Science advances $n Sci Adv $x MED00188818
- LZP __
- $a Pubmed-20210105