• Je něco špatně v tomto záznamu ?

Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases

D. Šimčíková, P. Heneberg,

. 2019 ; 9 (1) : 18577. [pub] 20191209

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20028717

Prediction methods have become an integral part of biomedical and biotechnological research. However, their clinical interpretations are largely based on biochemical or molecular data, but not clinical data. Here, we focus on improving the reliability and clinical applicability of prediction algorithms. We assembled and curated two large non-overlapping large databases of clinical phenotypes. These phenotypes were caused by missense variations in 44 and 63 genes associated with Mendelian diseases. We used these databases to establish and validate the model, allowing us to improve the predictions obtained from EVmutation, SNAP2 and PoPMuSiC 2.1. The predictions of clinical effects suffered from a lack of specificity, which appears to be the common constraint of all recently used prediction methods, although predictions mediated by these methods are associated with nearly absolute sensitivity. We introduced evidence-based tailoring of the default settings of the prediction methods; this tailoring substantially improved the prediction outcomes. Additionally, the comparisons of the clinically observed and theoretical variations led to the identification of large previously unreported pools of variations that were under negative selection during molecular evolution. The evolutionary variation analysis approach described here is the first to enable the highly specific identification of likely disease-causing missense variations that have not yet been associated with any clinical phenotype.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20028717
003      
CZ-PrNML
005      
20210114154835.0
007      
ta
008      
210105s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-019-54976-4 $2 doi
035    __
$a (PubMed)31819097
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Šimčíková, Daniela $u Charles University, Third Faculty of Medicine, Prague, Czech Republic.
245    10
$a Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases / $c D. Šimčíková, P. Heneberg,
520    9_
$a Prediction methods have become an integral part of biomedical and biotechnological research. However, their clinical interpretations are largely based on biochemical or molecular data, but not clinical data. Here, we focus on improving the reliability and clinical applicability of prediction algorithms. We assembled and curated two large non-overlapping large databases of clinical phenotypes. These phenotypes were caused by missense variations in 44 and 63 genes associated with Mendelian diseases. We used these databases to establish and validate the model, allowing us to improve the predictions obtained from EVmutation, SNAP2 and PoPMuSiC 2.1. The predictions of clinical effects suffered from a lack of specificity, which appears to be the common constraint of all recently used prediction methods, although predictions mediated by these methods are associated with nearly absolute sensitivity. We introduced evidence-based tailoring of the default settings of the prediction methods; this tailoring substantially improved the prediction outcomes. Additionally, the comparisons of the clinically observed and theoretical variations led to the identification of large previously unreported pools of variations that were under negative selection during molecular evolution. The evolutionary variation analysis approach described here is the first to enable the highly specific identification of likely disease-causing missense variations that have not yet been associated with any clinical phenotype.
650    _2
$a algoritmy $7 D000465
650    _2
$a zvířata $7 D000818
650    _2
$a výpočetní biologie $x metody $7 D019295
650    _2
$a ektodysplasiny $x genetika $7 D053331
650    _2
$a molekulární evoluce $7 D019143
650    _2
$a genetické nemoci vrozené $x genetika $7 D030342
650    _2
$a genetická variace $7 D014644
650    _2
$a genomika $7 D023281
650    _2
$a glukosa-6-fosfátdehydrogenasa $x genetika $7 D005954
650    _2
$a hemoglobiny $x genetika $7 D006454
650    _2
$a hepatocytární jaderný faktor 4 $x genetika $7 D051557
650    _2
$a lidé $7 D006801
650    _2
$a pravděpodobnostní funkce $7 D016013
650    12
$a modely genetické $7 D008957
650    12
$a mutace $7 D009154
650    _2
$a missense mutace $7 D020125
650    _2
$a fenotyp $7 D010641
650    _2
$a tyrosinfosfatasa nereceptorového typu 11 $x genetika $7 D054592
650    _2
$a proteomika $7 D040901
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Heneberg, Petr $u Charles University, Third Faculty of Medicine, Prague, Czech Republic. petr.heneberg@lf3.cuni.cz.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 9, č. 1 (2019), s. 18577
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31819097 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114154831 $b ABA008
999    __
$a ok $b bmc $g 1609052 $s 1119897
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 9 $c 1 $d 18577 $e 20191209 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...