-
Je něco špatně v tomto záznamu ?
Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases
D. Šimčíková, P. Heneberg,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
Springer Nature OA/Free Journals
od 2011-12-01
- MeSH
- algoritmy MeSH
- ektodysplasiny genetika MeSH
- fenotyp MeSH
- genetická variace MeSH
- genetické nemoci vrozené genetika MeSH
- genomika MeSH
- glukosa-6-fosfátdehydrogenasa genetika MeSH
- hemoglobiny genetika MeSH
- hepatocytární jaderný faktor 4 genetika MeSH
- lidé MeSH
- missense mutace MeSH
- modely genetické * MeSH
- molekulární evoluce MeSH
- mutace * MeSH
- pravděpodobnostní funkce MeSH
- proteomika MeSH
- tyrosinfosfatasa nereceptorového typu 11 genetika MeSH
- výpočetní biologie metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Prediction methods have become an integral part of biomedical and biotechnological research. However, their clinical interpretations are largely based on biochemical or molecular data, but not clinical data. Here, we focus on improving the reliability and clinical applicability of prediction algorithms. We assembled and curated two large non-overlapping large databases of clinical phenotypes. These phenotypes were caused by missense variations in 44 and 63 genes associated with Mendelian diseases. We used these databases to establish and validate the model, allowing us to improve the predictions obtained from EVmutation, SNAP2 and PoPMuSiC 2.1. The predictions of clinical effects suffered from a lack of specificity, which appears to be the common constraint of all recently used prediction methods, although predictions mediated by these methods are associated with nearly absolute sensitivity. We introduced evidence-based tailoring of the default settings of the prediction methods; this tailoring substantially improved the prediction outcomes. Additionally, the comparisons of the clinically observed and theoretical variations led to the identification of large previously unreported pools of variations that were under negative selection during molecular evolution. The evolutionary variation analysis approach described here is the first to enable the highly specific identification of likely disease-causing missense variations that have not yet been associated with any clinical phenotype.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20028717
- 003
- CZ-PrNML
- 005
- 20210114154835.0
- 007
- ta
- 008
- 210105s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-019-54976-4 $2 doi
- 035 __
- $a (PubMed)31819097
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Šimčíková, Daniela $u Charles University, Third Faculty of Medicine, Prague, Czech Republic.
- 245 10
- $a Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases / $c D. Šimčíková, P. Heneberg,
- 520 9_
- $a Prediction methods have become an integral part of biomedical and biotechnological research. However, their clinical interpretations are largely based on biochemical or molecular data, but not clinical data. Here, we focus on improving the reliability and clinical applicability of prediction algorithms. We assembled and curated two large non-overlapping large databases of clinical phenotypes. These phenotypes were caused by missense variations in 44 and 63 genes associated with Mendelian diseases. We used these databases to establish and validate the model, allowing us to improve the predictions obtained from EVmutation, SNAP2 and PoPMuSiC 2.1. The predictions of clinical effects suffered from a lack of specificity, which appears to be the common constraint of all recently used prediction methods, although predictions mediated by these methods are associated with nearly absolute sensitivity. We introduced evidence-based tailoring of the default settings of the prediction methods; this tailoring substantially improved the prediction outcomes. Additionally, the comparisons of the clinically observed and theoretical variations led to the identification of large previously unreported pools of variations that were under negative selection during molecular evolution. The evolutionary variation analysis approach described here is the first to enable the highly specific identification of likely disease-causing missense variations that have not yet been associated with any clinical phenotype.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 650 _2
- $a ektodysplasiny $x genetika $7 D053331
- 650 _2
- $a molekulární evoluce $7 D019143
- 650 _2
- $a genetické nemoci vrozené $x genetika $7 D030342
- 650 _2
- $a genetická variace $7 D014644
- 650 _2
- $a genomika $7 D023281
- 650 _2
- $a glukosa-6-fosfátdehydrogenasa $x genetika $7 D005954
- 650 _2
- $a hemoglobiny $x genetika $7 D006454
- 650 _2
- $a hepatocytární jaderný faktor 4 $x genetika $7 D051557
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a pravděpodobnostní funkce $7 D016013
- 650 12
- $a modely genetické $7 D008957
- 650 12
- $a mutace $7 D009154
- 650 _2
- $a missense mutace $7 D020125
- 650 _2
- $a fenotyp $7 D010641
- 650 _2
- $a tyrosinfosfatasa nereceptorového typu 11 $x genetika $7 D054592
- 650 _2
- $a proteomika $7 D040901
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Heneberg, Petr $u Charles University, Third Faculty of Medicine, Prague, Czech Republic. petr.heneberg@lf3.cuni.cz.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 9, č. 1 (2019), s. 18577
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31819097 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114154831 $b ABA008
- 999 __
- $a ok $b bmc $g 1609052 $s 1119897
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 9 $c 1 $d 18577 $e 20191209 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20210105