• Je něco špatně v tomto záznamu ?

Genome evolution of blind subterranean mole rats: Adaptive peripatric versus sympatric speciation

K. Li, S. Zhang, X. Song, A. Weyrich, Y. Wang, X. Liu, N. Wan, J. Liu, M. Lövy, H. Cui, V. Frenkel, A. Titievsky, J. Panov, L. Brodsky, E. Nevo

. 2020 ; 117 (51) : 32499-32508. [pub] 20201204

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21011712
E-zdroje Online Plný text

NLK Free Medical Journals od 1915 do Před 6 měsíci
Freely Accessible Science Journals od 1915 do Před 6 měsíci
PubMed Central od 1915 do Před 6 měsíci
Europe PubMed Central od 1915 do Před 6 měsíci
Open Access Digital Library od 1915-01-01
Open Access Digital Library od 1915-01-15

Speciation mechanisms remain controversial. Two speciation models occur in Israeli subterranean mole rats, genus Spalax: a regional speciation cline southward of four peripatric climatic chromosomal species and a local, geologic-edaphic, genic, and sympatric speciation. Here we highlight their genome evolution. The five species were separated into five genetic clusters by single nucleotide polymorphisms, copy number variations (CNVs), repeatome, and methylome in sympatry. The regional interspecific divergence correspond to Pleistocene climatic cycles. Climate warmings caused chromosomal speciation. Triple effective population size, Ne , declines match glacial cold cycles. Adaptive genes evolved under positive selection to underground stresses and to divergent climates, involving interspecies reproductive isolation. Genomic islands evolved mainly due to adaptive evolution involving ancient polymorphisms. Repeatome, including both CNV and LINE1 repetitive elements, separated the five species. Methylation in sympatry identified geologically chalk-basalt species that differentially affect thermoregulation, hypoxia, DNA repair, P53, and other pathways. Genome adaptive evolution highlights climatic and geologic-edaphic stress evolution and the two speciation models, peripatric and sympatric.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21011712
003      
CZ-PrNML
005      
20210507104237.0
007      
ta
008      
210420s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1073/pnas.2018123117 $2 doi
035    __
$a (PubMed)33277437
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Li, Kexin $u State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, 730000 Lanzhou, China; likexin@lzu.edu.cn nevo@research.haifa.ac.il $u Institute of Evolution, University of Haifa, 3498838 Haifa, Israel
245    10
$a Genome evolution of blind subterranean mole rats: Adaptive peripatric versus sympatric speciation / $c K. Li, S. Zhang, X. Song, A. Weyrich, Y. Wang, X. Liu, N. Wan, J. Liu, M. Lövy, H. Cui, V. Frenkel, A. Titievsky, J. Panov, L. Brodsky, E. Nevo
520    9_
$a Speciation mechanisms remain controversial. Two speciation models occur in Israeli subterranean mole rats, genus Spalax: a regional speciation cline southward of four peripatric climatic chromosomal species and a local, geologic-edaphic, genic, and sympatric speciation. Here we highlight their genome evolution. The five species were separated into five genetic clusters by single nucleotide polymorphisms, copy number variations (CNVs), repeatome, and methylome in sympatry. The regional interspecific divergence correspond to Pleistocene climatic cycles. Climate warmings caused chromosomal speciation. Triple effective population size, Ne , declines match glacial cold cycles. Adaptive genes evolved under positive selection to underground stresses and to divergent climates, involving interspecies reproductive isolation. Genomic islands evolved mainly due to adaptive evolution involving ancient polymorphisms. Repeatome, including both CNV and LINE1 repetitive elements, separated the five species. Methylation in sympatry identified geologically chalk-basalt species that differentially affect thermoregulation, hypoxia, DNA repair, P53, and other pathways. Genome adaptive evolution highlights climatic and geologic-edaphic stress evolution and the two speciation models, peripatric and sympatric.
650    _2
$a biologická adaptace $7 D000220
650    _2
$a zvířata $7 D000818
650    12
$a biologická evoluce $7 D005075
650    _2
$a variabilita počtu kopií segmentů DNA $7 D056915
650    _2
$a epigeneze genetická $7 D044127
650    _2
$a molekulární evoluce $7 D019143
650    _2
$a tok genů $7 D051456
650    _2
$a genetická variace $7 D014644
650    _2
$a populační genetika $7 D005828
650    _2
$a genom $7 D016678
650    _2
$a vazebná nerovnováha $7 D015810
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a jednonukleotidový polymorfismus $7 D020641
650    _2
$a reprodukční izolace $7 D060047
650    _2
$a Spalax $x genetika $x fyziologie $7 D046308
650    12
$a sympatrie $7 D061350
651    _2
$a Izrael $7 D007557
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Zhang, Shangzhe $u State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, 730000 Lanzhou, China
700    1_
$a Song, Xiaoying $u School of Public Health, Lanzhou University, Lanzhou, 730000, China
700    1_
$a Weyrich, Alexandra $u Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
700    1_
$a Wang, Yinjia $u State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, 730000 Lanzhou, China
700    1_
$a Liu, Xi $u State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, 730000 Lanzhou, China
700    1_
$a Wan, Na $u State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, 730000 Lanzhou, China
700    1_
$a Liu, Jianquan $u State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, 730000 Lanzhou, China
700    1_
$a Lövy, Matěj $u Faculty of Science, University of South Bohemia, 370 05 České Budejovice, Czech Republic
700    1_
$a Cui, Haihong $u Department of Gastroenterology, The 305 Hospital of PLA, 100017 Beijing, China
700    1_
$a Frenkel, Vladimir $u Institute of Evolution, University of Haifa, 3498838 Haifa, Israel
700    1_
$a Titievsky, Avi $u Tauber Bioinformatics Research Center, Haifa 3498838, Israel
700    1_
$a Panov, Julia $u Tauber Bioinformatics Research Center, Haifa 3498838, Israel $u Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel
700    1_
$a Brodsky, Leonid $u Tauber Bioinformatics Research Center, Haifa 3498838, Israel
700    1_
$a Nevo, Eviatar $u Institute of Evolution, University of Haifa, 3498838 Haifa, Israel; likexin@lzu.edu.cn nevo@research.haifa.ac.il
773    0_
$w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 117, č. 51 (2020), s. 32499-32508
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33277437 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210420 $b ABA008
991    __
$a 20210507104235 $b ABA008
999    __
$a ok $b bmc $g 1650166 $s 1132091
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 117 $c 51 $d 32499-32508 $e 20201204 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
LZP    __
$a Pubmed-20210420

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...