-
Je něco špatně v tomto záznamu ?
Accurate prediction of kinase-substrate networks using knowledge graphs
V. Nováček, G. McGauran, D. Matallanas, A. Vallejo Blanco, P. Conca, E. Muñoz, L. Costabello, K. Kanakaraj, Z. Nawaz, B. Walsh, SK. Mohamed, PY. Vandenbussche, CJ. Ryan, W. Kolch, D. Fey
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 2005
Public Library of Science (PLoS)
od 2005
PubMed Central
od 2005
Europe PubMed Central
od 2005
ProQuest Central
od 2005-06-01
Open Access Digital Library
od 2005-06-01
Open Access Digital Library
od 2005-01-01
Open Access Digital Library
od 2005-01-01
Medline Complete (EBSCOhost)
od 2005-06-01
Health & Medicine (ProQuest)
od 2005-06-01
ROAD: Directory of Open Access Scholarly Resources
od 2005
- MeSH
- fosforylace MeSH
- inhibitory proteinkinas farmakologie MeSH
- lidé MeSH
- počítačová simulace MeSH
- proteinkinasy metabolismus MeSH
- signální transdukce MeSH
- substrátová specifita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Phosphorylation of specific substrates by protein kinases is a key control mechanism for vital cell-fate decisions and other cellular processes. However, discovering specific kinase-substrate relationships is time-consuming and often rather serendipitous. Computational predictions alleviate these challenges, but the current approaches suffer from limitations like restricted kinome coverage and inaccuracy. They also typically utilise only local features without reflecting broader interaction context. To address these limitations, we have developed an alternative predictive model. It uses statistical relational learning on top of phosphorylation networks interpreted as knowledge graphs, a simple yet robust model for representing networked knowledge. Compared to a representative selection of six existing systems, our model has the highest kinome coverage and produces biologically valid high-confidence predictions not possible with the other tools. Specifically, we have experimentally validated predictions of previously unknown phosphorylations by the LATS1, AKT1, PKA and MST2 kinases in human. Thus, our tool is useful for focusing phosphoproteomic experiments, and facilitates the discovery of new phosphorylation reactions. Our model can be accessed publicly via an easy-to-use web interface (LinkPhinder).
Data Science Institute National University of Ireland Galway Ireland
Department of Oncology Universidad de Navarra Pamplona Spain
Faculty of Informatics Masaryk University Brno Czech Republic
Fujitsu Ireland Ltd Co Dublin Ireland
School of Medicine University College Dublin Belfield Dublin 4 Ireland
Systems Biology Ireland University College Dublin Belfield Dublin 4 Ireland
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21011763
- 003
- CZ-PrNML
- 005
- 20210507104151.0
- 007
- ta
- 008
- 210420s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pcbi.1007578 $2 doi
- 035 __
- $a (PubMed)33270624
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Nováček, Vít $u Data Science Institute, National University of Ireland Galway, Ireland $u Faculty of Informatics, Masaryk University, Brno, Czech Republic
- 245 10
- $a Accurate prediction of kinase-substrate networks using knowledge graphs / $c V. Nováček, G. McGauran, D. Matallanas, A. Vallejo Blanco, P. Conca, E. Muñoz, L. Costabello, K. Kanakaraj, Z. Nawaz, B. Walsh, SK. Mohamed, PY. Vandenbussche, CJ. Ryan, W. Kolch, D. Fey
- 520 9_
- $a Phosphorylation of specific substrates by protein kinases is a key control mechanism for vital cell-fate decisions and other cellular processes. However, discovering specific kinase-substrate relationships is time-consuming and often rather serendipitous. Computational predictions alleviate these challenges, but the current approaches suffer from limitations like restricted kinome coverage and inaccuracy. They also typically utilise only local features without reflecting broader interaction context. To address these limitations, we have developed an alternative predictive model. It uses statistical relational learning on top of phosphorylation networks interpreted as knowledge graphs, a simple yet robust model for representing networked knowledge. Compared to a representative selection of six existing systems, our model has the highest kinome coverage and produces biologically valid high-confidence predictions not possible with the other tools. Specifically, we have experimentally validated predictions of previously unknown phosphorylations by the LATS1, AKT1, PKA and MST2 kinases in human. Thus, our tool is useful for focusing phosphoproteomic experiments, and facilitates the discovery of new phosphorylation reactions. Our model can be accessed publicly via an easy-to-use web interface (LinkPhinder).
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a fosforylace $7 D010766
- 650 _2
- $a inhibitory proteinkinas $x farmakologie $7 D047428
- 650 _2
- $a proteinkinasy $x metabolismus $7 D011494
- 650 _2
- $a signální transdukce $7 D015398
- 650 _2
- $a substrátová specifita $7 D013379
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a McGauran, Gavin $u Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- 700 1_
- $a Matallanas, David $u Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- 700 1_
- $a Vallejo Blanco, Adrián $u Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland $u Department of Oncology, Universidad de Navarra, Pamplona, Spain
- 700 1_
- $a Conca, Piero $u Fujitsu Ireland Ltd., Co. Dublin, Ireland
- 700 1_
- $a Muñoz, Emir $u Data Science Institute, National University of Ireland Galway, Ireland $u Fujitsu Ireland Ltd., Co. Dublin, Ireland
- 700 1_
- $a Costabello, Luca $u Fujitsu Ireland Ltd., Co. Dublin, Ireland
- 700 1_
- $a Kanakaraj, Kamalesh $u Data Science Institute, National University of Ireland Galway, Ireland
- 700 1_
- $a Nawaz, Zeeshan $u Data Science Institute, National University of Ireland Galway, Ireland
- 700 1_
- $a Walsh, Brian $u Data Science Institute, National University of Ireland Galway, Ireland
- 700 1_
- $a Mohamed, Sameh K $u Data Science Institute, National University of Ireland Galway, Ireland
- 700 1_
- $a Vandenbussche, Pierre-Yves $u Fujitsu Ireland Ltd., Co. Dublin, Ireland
- 700 1_
- $a Ryan, Colm J $u Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- 700 1_
- $a Kolch, Walter $u Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland $u Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland $u School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- 700 1_
- $a Fey, Dirk $u Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland $u School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- 773 0_
- $w MED00008919 $t PLoS computational biology $x 1553-7358 $g Roč. 16, č. 12 (2020), s. e1007578
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33270624 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210420 $b ABA008
- 991 __
- $a 20210507104149 $b ABA008
- 999 __
- $a ok $b bmc $g 1650208 $s 1132142
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 16 $c 12 $d e1007578 $e 20201203 $i 1553-7358 $m PLoS computational biology $n PLoS Comput Biol $x MED00008919
- LZP __
- $a Pubmed-20210420