Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Accurate prediction of kinase-substrate networks using knowledge graphs

V. Nováček, G. McGauran, D. Matallanas, A. Vallejo Blanco, P. Conca, E. Muñoz, L. Costabello, K. Kanakaraj, Z. Nawaz, B. Walsh, SK. Mohamed, PY. Vandenbussche, CJ. Ryan, W. Kolch, D. Fey

. 2020 ; 16 (12) : e1007578. [pub] 20201203

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Phosphorylation of specific substrates by protein kinases is a key control mechanism for vital cell-fate decisions and other cellular processes. However, discovering specific kinase-substrate relationships is time-consuming and often rather serendipitous. Computational predictions alleviate these challenges, but the current approaches suffer from limitations like restricted kinome coverage and inaccuracy. They also typically utilise only local features without reflecting broader interaction context. To address these limitations, we have developed an alternative predictive model. It uses statistical relational learning on top of phosphorylation networks interpreted as knowledge graphs, a simple yet robust model for representing networked knowledge. Compared to a representative selection of six existing systems, our model has the highest kinome coverage and produces biologically valid high-confidence predictions not possible with the other tools. Specifically, we have experimentally validated predictions of previously unknown phosphorylations by the LATS1, AKT1, PKA and MST2 kinases in human. Thus, our tool is useful for focusing phosphoproteomic experiments, and facilitates the discovery of new phosphorylation reactions. Our model can be accessed publicly via an easy-to-use web interface (LinkPhinder).

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21011763
003      
CZ-PrNML
005      
20210507104151.0
007      
ta
008      
210420s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pcbi.1007578 $2 doi
035    __
$a (PubMed)33270624
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Nováček, Vít $u Data Science Institute, National University of Ireland Galway, Ireland $u Faculty of Informatics, Masaryk University, Brno, Czech Republic
245    10
$a Accurate prediction of kinase-substrate networks using knowledge graphs / $c V. Nováček, G. McGauran, D. Matallanas, A. Vallejo Blanco, P. Conca, E. Muñoz, L. Costabello, K. Kanakaraj, Z. Nawaz, B. Walsh, SK. Mohamed, PY. Vandenbussche, CJ. Ryan, W. Kolch, D. Fey
520    9_
$a Phosphorylation of specific substrates by protein kinases is a key control mechanism for vital cell-fate decisions and other cellular processes. However, discovering specific kinase-substrate relationships is time-consuming and often rather serendipitous. Computational predictions alleviate these challenges, but the current approaches suffer from limitations like restricted kinome coverage and inaccuracy. They also typically utilise only local features without reflecting broader interaction context. To address these limitations, we have developed an alternative predictive model. It uses statistical relational learning on top of phosphorylation networks interpreted as knowledge graphs, a simple yet robust model for representing networked knowledge. Compared to a representative selection of six existing systems, our model has the highest kinome coverage and produces biologically valid high-confidence predictions not possible with the other tools. Specifically, we have experimentally validated predictions of previously unknown phosphorylations by the LATS1, AKT1, PKA and MST2 kinases in human. Thus, our tool is useful for focusing phosphoproteomic experiments, and facilitates the discovery of new phosphorylation reactions. Our model can be accessed publicly via an easy-to-use web interface (LinkPhinder).
650    _2
$a počítačová simulace $7 D003198
650    _2
$a lidé $7 D006801
650    _2
$a fosforylace $7 D010766
650    _2
$a inhibitory proteinkinas $x farmakologie $7 D047428
650    _2
$a proteinkinasy $x metabolismus $7 D011494
650    _2
$a signální transdukce $7 D015398
650    _2
$a substrátová specifita $7 D013379
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a McGauran, Gavin $u Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
700    1_
$a Matallanas, David $u Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
700    1_
$a Vallejo Blanco, Adrián $u Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland $u Department of Oncology, Universidad de Navarra, Pamplona, Spain
700    1_
$a Conca, Piero $u Fujitsu Ireland Ltd., Co. Dublin, Ireland
700    1_
$a Muñoz, Emir $u Data Science Institute, National University of Ireland Galway, Ireland $u Fujitsu Ireland Ltd., Co. Dublin, Ireland
700    1_
$a Costabello, Luca $u Fujitsu Ireland Ltd., Co. Dublin, Ireland
700    1_
$a Kanakaraj, Kamalesh $u Data Science Institute, National University of Ireland Galway, Ireland
700    1_
$a Nawaz, Zeeshan $u Data Science Institute, National University of Ireland Galway, Ireland
700    1_
$a Walsh, Brian $u Data Science Institute, National University of Ireland Galway, Ireland
700    1_
$a Mohamed, Sameh K $u Data Science Institute, National University of Ireland Galway, Ireland
700    1_
$a Vandenbussche, Pierre-Yves $u Fujitsu Ireland Ltd., Co. Dublin, Ireland
700    1_
$a Ryan, Colm J $u Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
700    1_
$a Kolch, Walter $u Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland $u Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland $u School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
700    1_
$a Fey, Dirk $u Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland $u School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
773    0_
$w MED00008919 $t PLoS computational biology $x 1553-7358 $g Roč. 16, č. 12 (2020), s. e1007578
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33270624 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210420 $b ABA008
991    __
$a 20210507104149 $b ABA008
999    __
$a ok $b bmc $g 1650208 $s 1132142
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 16 $c 12 $d e1007578 $e 20201203 $i 1553-7358 $m PLoS computational biology $n PLoS Comput Biol $x MED00008919
LZP    __
$a Pubmed-20210420

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...