-
Je něco špatně v tomto záznamu ?
Automated Generation of Three-Dimensional Complex Muscle Geometries for Use in Personalised Musculoskeletal Models
L. Modenese, J. Kohout
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
Grantová podpora
cohort 2017
Imperial College Research Fellowship
LO1506
Ministerstvo Školství, Mládeže a Tělovýchovy
- MeSH
- biologické modely * MeSH
- biomechanika MeSH
- kosterní svaly * diagnostické zobrazování fyziologie MeSH
- kyčelní kloub * diagnostické zobrazování fyziologie MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mrtvola MeSH
- počítačová rentgenová tomografie MeSH
- počítačové modelování podle konkrétního pacienta * MeSH
- senioři nad 80 let MeSH
- Check Tag
- lidé MeSH
- senioři nad 80 let MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The geometrical representation of muscles in computational models of the musculoskeletal system typically consists of a series of line segments. These muscle anatomies are based on measurements from a limited number of cadaveric studies that recently have been used as atlases for creating subject-specific models from medical images, so potentially restricting the options for personalisation and assessment of muscle geometrical models. To overcome this methodological limitation, we propose a novel, completely automated technique that, from a surface geometry of a skeletal muscle and its attachment areas, can generate an arbitrary number of lines of action (fibres) composed by a user-defined number of straight-line segments. These fibres can be included in standard musculoskeletal models and used in biomechanical simulations. This methodology was applied to the surfaces of four muscles surrounding the hip joint (iliacus, psoas, gluteus maximus and gluteus medius), segmented on magnetic resonance imaging scans from a cadaveric dataset, for which highly discretised muscle representations were created and used to simulate functional tasks. The fibres' moment arms were validated against measurements and models of the same muscles from the literature with promising outcomes. The proposed approach is expected to improve the anatomical representation of skeletal muscles in personalised biomechanical models and finite element applications.
Department of Civil and Environmental Engineering Imperial College London London UK
Faculty of Applied Sciences University of West Bohemia Pilsen Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21012508
- 003
- CZ-PrNML
- 005
- 20210507101558.0
- 007
- ta
- 008
- 210420s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s10439-020-02490-4 $2 doi
- 035 __
- $a (PubMed)32185569
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Modenese, Luca $u Department of Civil and Environmental Engineering, Imperial College London, London, UK. l.modenese@imperial.ac.uk
- 245 10
- $a Automated Generation of Three-Dimensional Complex Muscle Geometries for Use in Personalised Musculoskeletal Models / $c L. Modenese, J. Kohout
- 520 9_
- $a The geometrical representation of muscles in computational models of the musculoskeletal system typically consists of a series of line segments. These muscle anatomies are based on measurements from a limited number of cadaveric studies that recently have been used as atlases for creating subject-specific models from medical images, so potentially restricting the options for personalisation and assessment of muscle geometrical models. To overcome this methodological limitation, we propose a novel, completely automated technique that, from a surface geometry of a skeletal muscle and its attachment areas, can generate an arbitrary number of lines of action (fibres) composed by a user-defined number of straight-line segments. These fibres can be included in standard musculoskeletal models and used in biomechanical simulations. This methodology was applied to the surfaces of four muscles surrounding the hip joint (iliacus, psoas, gluteus maximus and gluteus medius), segmented on magnetic resonance imaging scans from a cadaveric dataset, for which highly discretised muscle representations were created and used to simulate functional tasks. The fibres' moment arms were validated against measurements and models of the same muscles from the literature with promising outcomes. The proposed approach is expected to improve the anatomical representation of skeletal muscles in personalised biomechanical models and finite element applications.
- 650 _2
- $a senioři nad 80 let $7 D000369
- 650 _2
- $a biomechanika $7 D001696
- 650 _2
- $a mrtvola $7 D002102
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 12
- $a kyčelní kloub $x diagnostické zobrazování $x fyziologie $7 D006621
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a magnetická rezonanční tomografie $7 D008279
- 650 12
- $a biologické modely $7 D008954
- 650 12
- $a kosterní svaly $x diagnostické zobrazování $x fyziologie $7 D018482
- 650 12
- $a počítačové modelování podle konkrétního pacienta $7 D066230
- 650 _2
- $a počítačová rentgenová tomografie $7 D014057
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Kohout, Josef $u Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic
- 773 0_
- $w MED00149876 $t Annals of biomedical engineering $x 1573-9686 $g Roč. 48, č. 6 (2020), s. 1793-1804
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32185569 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210420 $b ABA008
- 991 __
- $a 20210507101558 $b ABA008
- 999 __
- $a ok $b bmc $g 1650800 $s 1132887
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 48 $c 6 $d 1793-1804 $e 20200317 $i 1573-9686 $m Annals of biomedical engineering $n Ann. biomed. eng. $x MED00149876
- GRA __
- $a cohort 2017 $p Imperial College Research Fellowship
- GRA __
- $a LO1506 $p Ministerstvo Školství, Mládeže a Tělovýchovy
- LZP __
- $a Pubmed-20210420