• Something wrong with this record ?

Biocompatible polypeptide nanogel: Effect of surfactants on nanogelation in inverse miniemulsion, in vivo biodistribution and blood clearance evaluation

D. Oleshchuk, P. Šálek, J. Dvořáková, J. Kučka, E. Pavlova, P. Francová, L. Šefc, V. Proks

. 2021 ; 126 (-) : 111865. [pub] 20210108

Language English Country Netherlands

Document type Journal Article

Horseradish peroxidase (HRP)/H2O2-mediated crosslinking of polypeptides in inverse miniemulsion is a promising approach for the development of next-generation biocompatible and biodegradable nanogels. Herein, we present a fundamental investigation of the effects of three surfactants and their different concentrations on the (HRP)/H2O2-mediated nanogelation of poly[N5-(2-hydroxyethyl)-l-glutamine-ran-N5-propargyl-l-glutamine-ran-N5-(6-aminohexyl)-l-glutamine]-ran-N5-[2-(4-hydroxyphenyl)ethyl)-l-glutamine] (PHEG-Tyr) in inverse miniemulsion. The surfactants sorbitan monooleate (SPAN 80), polyoxyethylenesorbitan trioleate (TWEEN 85), and dioctyl sulfosuccinate sodium salt (AOT) were selected and their influence on the nanogel size, size distribution, and morphology was evaluated. The most effective nanogelation stabilization was achieved with 20 wt% nonionic surfactant SPAN 80. The diameter of the hydrogel nanoparticles was 230 nm (dynamic light scattering, DLS) and was confirmed also by nanoparticle tracking analysis (NTA) which showed the diameters ranging from 200 to 300 nm. Microscopy and image analyses showed that the nanogel in the dry state was spherical in shape and had number-average diameter Dn = 26 nm and dispersity Р= 1.91. In the frozen-hydrated state, the nanogel appeared porous and was larger in size with Dn = 182 nm and Р= 1.52. Our results indicated that the nanogelation of the polymer precursor required a higher concentration of surfactant than classical inverse miniemulsion polymerization to ensure effective stabilization. The developed polypeptide nanogel was radiolabeled with 125I, and in vivo biodistribution and blood clearance evaluations were performed. We found that the 125I-labeled nanogel was well-biodistributed in the bloodstream, cleared from mouse blood during 48 h by renal and hepatic pathways and did not provoke any sign of toxic effects.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21018433
003      
CZ-PrNML
005      
20210830100025.0
007      
ta
008      
210728s2021 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.msec.2021.111865 $2 doi
035    __
$a (PubMed)34082926
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Oleshchuk, Diana $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12800 Prague 2, Czech Republic
245    10
$a Biocompatible polypeptide nanogel: Effect of surfactants on nanogelation in inverse miniemulsion, in vivo biodistribution and blood clearance evaluation / $c D. Oleshchuk, P. Šálek, J. Dvořáková, J. Kučka, E. Pavlova, P. Francová, L. Šefc, V. Proks
520    9_
$a Horseradish peroxidase (HRP)/H2O2-mediated crosslinking of polypeptides in inverse miniemulsion is a promising approach for the development of next-generation biocompatible and biodegradable nanogels. Herein, we present a fundamental investigation of the effects of three surfactants and their different concentrations on the (HRP)/H2O2-mediated nanogelation of poly[N5-(2-hydroxyethyl)-l-glutamine-ran-N5-propargyl-l-glutamine-ran-N5-(6-aminohexyl)-l-glutamine]-ran-N5-[2-(4-hydroxyphenyl)ethyl)-l-glutamine] (PHEG-Tyr) in inverse miniemulsion. The surfactants sorbitan monooleate (SPAN 80), polyoxyethylenesorbitan trioleate (TWEEN 85), and dioctyl sulfosuccinate sodium salt (AOT) were selected and their influence on the nanogel size, size distribution, and morphology was evaluated. The most effective nanogelation stabilization was achieved with 20 wt% nonionic surfactant SPAN 80. The diameter of the hydrogel nanoparticles was 230 nm (dynamic light scattering, DLS) and was confirmed also by nanoparticle tracking analysis (NTA) which showed the diameters ranging from 200 to 300 nm. Microscopy and image analyses showed that the nanogel in the dry state was spherical in shape and had number-average diameter Dn = 26 nm and dispersity Р= 1.91. In the frozen-hydrated state, the nanogel appeared porous and was larger in size with Dn = 182 nm and Р= 1.52. Our results indicated that the nanogelation of the polymer precursor required a higher concentration of surfactant than classical inverse miniemulsion polymerization to ensure effective stabilization. The developed polypeptide nanogel was radiolabeled with 125I, and in vivo biodistribution and blood clearance evaluations were performed. We found that the 125I-labeled nanogel was well-biodistributed in the bloodstream, cleared from mouse blood during 48 h by renal and hepatic pathways and did not provoke any sign of toxic effects.
650    _2
$a zvířata $7 D000818
650    12
$a peroxid vodíku $7 D006861
650    _2
$a myši $7 D051379
650    _2
$a nanogely $7 D000080385
650    _2
$a peptidy $7 D010455
650    _2
$a polyethylenglykoly $7 D011092
650    _2
$a polyethylenimin $7 D011094
650    12
$a povrchově aktivní látky $7 D013501
650    _2
$a tkáňová distribuce $7 D014018
655    _2
$a časopisecké články $7 D016428
700    1_
$a Šálek, Petr $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic. Electronic address: salek@imc.cas.cz
700    1_
$a Dvořáková, Jana $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
700    1_
$a Kučka, Jan $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
700    1_
$a Pavlova, Ewa $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
700    1_
$a Francová, Pavla $u Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, 120 00 Prague 2, Czech Republic
700    1_
$a Šefc, Luděk $u Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, 120 00 Prague 2, Czech Republic
700    1_
$a Proks, Vladimír $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
773    0_
$w MED00184559 $t Materials science & engineering. C, Materials for biological applications $x 1873-0191 $g Roč. 126, č. - (2021), s. 111865
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34082926 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20210830100026 $b ABA008
999    __
$a ok $b bmc $g 1689522 $s 1138877
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 126 $c - $d 111865 $e 20210108 $i 1873-0191 $m Materials science & engineering. C, Materials for biological applications $n Mater Sci Eng C Mater Biol Appl $x MED00184559
LZP    __
$a Pubmed-20210728

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...