-
Je něco špatně v tomto záznamu ?
Biocompatible indocyanine green loaded PLA nanofibers for in situ antimicrobial photodynamic therapy
E. Preis, T. Anders, J. Širc, R. Hobzova, AI. Cocarta, U. Bakowsky, J. Jedelská
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
- MeSH
- biokompatibilní materiály chemie farmakologie MeSH
- buněčné linie MeSH
- chorioalantoická membrána krevní zásobení účinky léků MeSH
- Escherichia coli účinky léků růst a vývoj MeSH
- fibroblasty cytologie účinky léků MeSH
- fotochemoterapie MeSH
- indokyanová zeleň chemie farmakologie MeSH
- mikrobiální viabilita účinky léků MeSH
- myši MeSH
- nanovlákna MeSH
- obvazy MeSH
- polyestery chemie MeSH
- proliferace buněk účinky léků MeSH
- Staphylococcus aureus účinky léků růst a vývoj MeSH
- Staphylococcus saprophyticus účinky léků růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Chronic wounds and their associated bacterial infections are major issues in modern health care systems. Therefore, antimicrobial resistance (AMR), treatment costs, and number of disability-adjusted life-years have gained more interest. Recently, photodynamic therapy emerged as an effective approach against resistant and naïve bacterial strains with a low probability of creating AMR. In this study, needleless electrospinning was used to produce an indocyanine green (ICG) loaded poly(d,l-lactide) nanofibrous mesh as a photoresponsive wound dressing. The non-woven mesh had a homogeneous nanofibrous structure and showed long-term hydrolytic stability at different pH values. The antimicrobial activity was tested against several bacterial strains, namely Staphylococcus saprophyticus subsp. bovis, Escherichia coli DH5 alpha, and Staphylococcus aureus subsp. aureus. Upon irradiation with a laser of a specific wavelength (λ = 810 nm), the bacterial viability was significantly reduced by 99.978% (3.66 log10), 99.699% (2.52 log10), and 99.977% (3.64 log10), respectively. The nanofibrous mesh showed good biocompatibility, which was confirmed by the proliferation of mouse fibroblasts (L929) on the surface and into deeper parts of the mesh. Furthermore, a favorable proangiogenic effect was observed in ovo using the chorioallantoic membrane assay. In general, it can be concluded that ICG loaded nanofibers as an innovative wound dressing represent a promising strategy against chronic wounds associated with skin infections.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21020070
- 003
- CZ-PrNML
- 005
- 20211229080904.0
- 007
- ta
- 008
- 210728s2020 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.msec.2020.111068 $2 doi
- 035 __
- $a (PubMed)32600692
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Preis, Eduard $u Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany. Electronic address: eduard.preis@pharmazie.uni-marburg.de
- 245 10
- $a Biocompatible indocyanine green loaded PLA nanofibers for in situ antimicrobial photodynamic therapy / $c E. Preis, T. Anders, J. Širc, R. Hobzova, AI. Cocarta, U. Bakowsky, J. Jedelská
- 520 9_
- $a Chronic wounds and their associated bacterial infections are major issues in modern health care systems. Therefore, antimicrobial resistance (AMR), treatment costs, and number of disability-adjusted life-years have gained more interest. Recently, photodynamic therapy emerged as an effective approach against resistant and naïve bacterial strains with a low probability of creating AMR. In this study, needleless electrospinning was used to produce an indocyanine green (ICG) loaded poly(d,l-lactide) nanofibrous mesh as a photoresponsive wound dressing. The non-woven mesh had a homogeneous nanofibrous structure and showed long-term hydrolytic stability at different pH values. The antimicrobial activity was tested against several bacterial strains, namely Staphylococcus saprophyticus subsp. bovis, Escherichia coli DH5 alpha, and Staphylococcus aureus subsp. aureus. Upon irradiation with a laser of a specific wavelength (λ = 810 nm), the bacterial viability was significantly reduced by 99.978% (3.66 log10), 99.699% (2.52 log10), and 99.977% (3.64 log10), respectively. The nanofibrous mesh showed good biocompatibility, which was confirmed by the proliferation of mouse fibroblasts (L929) on the surface and into deeper parts of the mesh. Furthermore, a favorable proangiogenic effect was observed in ovo using the chorioallantoic membrane assay. In general, it can be concluded that ICG loaded nanofibers as an innovative wound dressing represent a promising strategy against chronic wounds associated with skin infections.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a obvazy $7 D001458
- 650 _2
- $a biokompatibilní materiály $x chemie $x farmakologie $7 D001672
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a proliferace buněk $x účinky léků $7 D049109
- 650 _2
- $a chorioalantoická membrána $x krevní zásobení $x účinky léků $7 D049033
- 650 _2
- $a Escherichia coli $x účinky léků $x růst a vývoj $7 D004926
- 650 _2
- $a fibroblasty $x cytologie $x účinky léků $7 D005347
- 650 _2
- $a indokyanová zeleň $x chemie $x farmakologie $7 D007208
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a mikrobiální viabilita $x účinky léků $7 D050296
- 650 _2
- $a nanovlákna $7 D057139
- 650 _2
- $a fotochemoterapie $7 D010778
- 650 _2
- $a polyestery $x chemie $7 D011091
- 650 _2
- $a Staphylococcus aureus $x účinky léků $x růst a vývoj $7 D013211
- 650 _2
- $a Staphylococcus saprophyticus $x účinky léků $x růst a vývoj $7 D057790
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Anders, Thomas $u Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany. Electronic address: thomas.anders@pharmazie.uni-marburg.de
- 700 1_
- $a Širc, Jakub $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic. Electronic address: sirc@imc.cas.cz
- 700 1_
- $a Hobzová, Radka, $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic. Electronic address: hobzova@imc.cas.cz $d 1976- $7 jo2011640493
- 700 1_
- $a Cocarta, Ana-Irina $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic. Electronic address: cocarta@imc.cas.cz
- 700 1_
- $a Bakowsky, Udo $u Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
- 700 1_
- $a Jedelská, Jarmila $u Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany. Electronic address: jarmila.jedelska@pharmazie.uni-marburg.de
- 773 0_
- $w MED00184559 $t Materials science & engineering. C, Materials for biological applications $x 1873-0191 $g Roč. 115, č. - (2020), s. 111068
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32600692 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210728 $b ABA008
- 991 __
- $a 20211229080900 $b ABA008
- 999 __
- $a ok $b bmc $g 1690792 $s 1140516
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 115 $c - $d 111068 $e 20200511 $i 1873-0191 $m Materials science & engineering. C, Materials for biological applications $n Mater Sci Eng C Mater Biol Appl $x MED00184559
- LZP __
- $a Pubmed-20210728