-
Je něco špatně v tomto záznamu ?
Structure and Glass Transition Temperature of Amorphous Dispersions of Model Pharmaceuticals with Nucleobases from Molecular Dynamics
C. Červinka, M. Fulem
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
Grantová podpora
19-02889S
Grantová Agentura České Republiky
NLK
Directory of Open Access Journals
od 2010
Free Medical Journals
od 2010
PubMed Central
od 2009
Europe PubMed Central
od 2009
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2009-01-01
Open Access Digital Library
od 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2009
- Publikační typ
- časopisecké články MeSH
Glass transition temperature (Tg) is an important material property, which predetermines the kinetic stability of amorphous solids. In the context of active pharmaceutical ingredients (API), there is motivation to maximize their Tg by forming amorphous mixtures with other chemicals, labeled excipients. Molecular dynamics simulations are a natural computational tool to investigate the relationships between structure, dynamics, and cohesion of amorphous materials with an all-atom resolution. This work presents a computational study, addressing primarily the predictions of the glass transition temperatures of four selected API (carbamazepine, racemic ibuprofen, indomethacin, and naproxen) with two nucleobases (adenine and cytosine). Since the classical non-polarizable simulations fail to reach the quantitative accuracy of the predicted Tg, analyses of internal dynamics, hydrogen bonding, and cohesive forces in bulk phases of pure API and their mixtures with the nucleobases are performed to interpret the predicted trends. This manuscript reveals the method for a systematic search of beneficial pairs of API and excipients (with maximum Tg when mixed). Monitoring of transport and cohesive properties of API-excipients systems via molecular simulation will enable the design of such API formulations more efficiently in the future.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21024165
- 003
- CZ-PrNML
- 005
- 20211013134032.0
- 007
- ta
- 008
- 211006s2021 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/pharmaceutics13081253 $2 doi
- 035 __
- $a (PubMed)34452214
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Červinka, Ctirad $u Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
- 245 10
- $a Structure and Glass Transition Temperature of Amorphous Dispersions of Model Pharmaceuticals with Nucleobases from Molecular Dynamics / $c C. Červinka, M. Fulem
- 520 9_
- $a Glass transition temperature (Tg) is an important material property, which predetermines the kinetic stability of amorphous solids. In the context of active pharmaceutical ingredients (API), there is motivation to maximize their Tg by forming amorphous mixtures with other chemicals, labeled excipients. Molecular dynamics simulations are a natural computational tool to investigate the relationships between structure, dynamics, and cohesion of amorphous materials with an all-atom resolution. This work presents a computational study, addressing primarily the predictions of the glass transition temperatures of four selected API (carbamazepine, racemic ibuprofen, indomethacin, and naproxen) with two nucleobases (adenine and cytosine). Since the classical non-polarizable simulations fail to reach the quantitative accuracy of the predicted Tg, analyses of internal dynamics, hydrogen bonding, and cohesive forces in bulk phases of pure API and their mixtures with the nucleobases are performed to interpret the predicted trends. This manuscript reveals the method for a systematic search of beneficial pairs of API and excipients (with maximum Tg when mixed). Monitoring of transport and cohesive properties of API-excipients systems via molecular simulation will enable the design of such API formulations more efficiently in the future.
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Fulem, Michal $u Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
- 773 0_
- $w MED00186380 $t Pharmaceutics $x 1999-4923 $g Roč. 13, č. 8 (2021)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34452214 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20211006 $b ABA008
- 991 __
- $a 20211013134029 $b ABA008
- 999 __
- $a ind $b bmc $g 1708211 $s 1144662
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 13 $c 8 $e 20210813 $i 1999-4923 $m Pharmaceutics $n Pharmaceutics $x MED00186380
- GRA __
- $a 19-02889S $p Grantová Agentura České Republiky
- LZP __
- $a Pubmed-20211006