-
Je něco špatně v tomto záznamu ?
Comparison of macro-, micro- and nanomechanical properties of clinically-relevant UHMWPE formulations
M. Slouf, S. Arevalo, H. Vlkova, V. Gajdosova, V. Kralik, L. Pruitt
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- difrakce rentgenového záření MeSH
- maloúhlový rozptyl MeSH
- polyethyleny * MeSH
- testování materiálů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We characterized a set of eleven clinically relevant formulations of UHMWPE for total joint replacements. Although their molecular and supermolecular structure were quite similar as evidenced by IR, DSC and SAXS measurements, there were slight differences in their crystallinity (DSC crystallinity ranging from 52 to 61%), which were connected with processing conditions, such as the total radiation dose, thermal treatment and/or addition of biocompatible stabilizers. Mechanical properties were assessed at all length scales, using macroscale compression testing, non-instrumented and instrumented microindentation hardness testing (at loading forces ~500 mN), and nanoindentation hardness testing measured at both higher and lower loading (~4 mN and ~0.6 mN, respectively). In agreement with theoretical predictions, we found linear correlations between UHMWPE crystallinity and its stiffness-related properties (elastic moduli, yield stress, and hardness) at all length scales (macro-, micro- and nanoscale). Detailed statistical evaluation of our dataset showed that the accuracy and precision of the applied methods decreased in the following order: non-instrumented microindentation ≥ instrumented microindentation ≥ macromechanical properties ≥ nanoindentation measured at higher loading forces ≫ nanoindentation measured at lower loading forces. The results confirm that microindentation and nanoindentation at sufficiently high loading forces are reliable methods, suitable for UHMWPE characterization.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21025235
- 003
- CZ-PrNML
- 005
- 20211026134012.0
- 007
- ta
- 008
- 211013s2021 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jmbbm.2020.104205 $2 doi
- 035 __
- $a (PubMed)34058599
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Slouf, Miroslav $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nam. 2, 162 06, Prague 6, Czech Republic. Electronic address: slouf@imc.cas.cz
- 245 10
- $a Comparison of macro-, micro- and nanomechanical properties of clinically-relevant UHMWPE formulations / $c M. Slouf, S. Arevalo, H. Vlkova, V. Gajdosova, V. Kralik, L. Pruitt
- 520 9_
- $a We characterized a set of eleven clinically relevant formulations of UHMWPE for total joint replacements. Although their molecular and supermolecular structure were quite similar as evidenced by IR, DSC and SAXS measurements, there were slight differences in their crystallinity (DSC crystallinity ranging from 52 to 61%), which were connected with processing conditions, such as the total radiation dose, thermal treatment and/or addition of biocompatible stabilizers. Mechanical properties were assessed at all length scales, using macroscale compression testing, non-instrumented and instrumented microindentation hardness testing (at loading forces ~500 mN), and nanoindentation hardness testing measured at both higher and lower loading (~4 mN and ~0.6 mN, respectively). In agreement with theoretical predictions, we found linear correlations between UHMWPE crystallinity and its stiffness-related properties (elastic moduli, yield stress, and hardness) at all length scales (macro-, micro- and nanoscale). Detailed statistical evaluation of our dataset showed that the accuracy and precision of the applied methods decreased in the following order: non-instrumented microindentation ≥ instrumented microindentation ≥ macromechanical properties ≥ nanoindentation measured at higher loading forces ≫ nanoindentation measured at lower loading forces. The results confirm that microindentation and nanoindentation at sufficiently high loading forces are reliable methods, suitable for UHMWPE characterization.
- 650 _2
- $a testování materiálů $7 D008422
- 650 12
- $a polyethyleny $7 D011095
- 650 _2
- $a maloúhlový rozptyl $7 D053838
- 650 _2
- $a difrakce rentgenového záření $7 D014961
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Arevalo, Sofia $u Department of Mechanical Engineering, University of California, 5134 Etcheverry Hall, Berkeley, CA, 94720, United States
- 700 1_
- $a Vlkova, Helena $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nam. 2, 162 06, Prague 6, Czech Republic
- 700 1_
- $a Gajdosova, Veronika $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nam. 2, 162 06, Prague 6, Czech Republic
- 700 1_
- $a Kralik, Vlastimil $u Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07, Prague 6, Czech Republic
- 700 1_
- $a Pruitt, Lisa $u Department of Mechanical Engineering, University of California, 5134 Etcheverry Hall, Berkeley, CA, 94720, United States. Electronic address: lpruitt@berkeley.edu
- 773 0_
- $w MED00166961 $t Journal of the mechanical behavior of biomedical materials $x 1878-0180 $g Roč. 120, č. - (2021), s. 104205
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34058599 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026134018 $b ABA008
- 999 __
- $a ok $b bmc $g 1714334 $s 1145742
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 120 $c - $d 104205 $e 20201117 $i 1878-0180 $m Journal of the mechanical behavior of biomedical materials $n J Mech Behav Biomed Mater $x MED00166961
- LZP __
- $a Pubmed-20211013