• Je něco špatně v tomto záznamu ?

Comparison of macro-, micro- and nanomechanical properties of clinically-relevant UHMWPE formulations

M. Slouf, S. Arevalo, H. Vlkova, V. Gajdosova, V. Kralik, L. Pruitt

. 2021 ; 120 (-) : 104205. [pub] 20201117

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21025235

We characterized a set of eleven clinically relevant formulations of UHMWPE for total joint replacements. Although their molecular and supermolecular structure were quite similar as evidenced by IR, DSC and SAXS measurements, there were slight differences in their crystallinity (DSC crystallinity ranging from 52 to 61%), which were connected with processing conditions, such as the total radiation dose, thermal treatment and/or addition of biocompatible stabilizers. Mechanical properties were assessed at all length scales, using macroscale compression testing, non-instrumented and instrumented microindentation hardness testing (at loading forces ~500 mN), and nanoindentation hardness testing measured at both higher and lower loading (~4 mN and ~0.6 mN, respectively). In agreement with theoretical predictions, we found linear correlations between UHMWPE crystallinity and its stiffness-related properties (elastic moduli, yield stress, and hardness) at all length scales (macro-, micro- and nanoscale). Detailed statistical evaluation of our dataset showed that the accuracy and precision of the applied methods decreased in the following order: non-instrumented microindentation ≥ instrumented microindentation ≥ macromechanical properties ≥ nanoindentation measured at higher loading forces ≫ nanoindentation measured at lower loading forces. The results confirm that microindentation and nanoindentation at sufficiently high loading forces are reliable methods, suitable for UHMWPE characterization.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21025235
003      
CZ-PrNML
005      
20211026134012.0
007      
ta
008      
211013s2021 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jmbbm.2020.104205 $2 doi
035    __
$a (PubMed)34058599
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Slouf, Miroslav $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nam. 2, 162 06, Prague 6, Czech Republic. Electronic address: slouf@imc.cas.cz
245    10
$a Comparison of macro-, micro- and nanomechanical properties of clinically-relevant UHMWPE formulations / $c M. Slouf, S. Arevalo, H. Vlkova, V. Gajdosova, V. Kralik, L. Pruitt
520    9_
$a We characterized a set of eleven clinically relevant formulations of UHMWPE for total joint replacements. Although their molecular and supermolecular structure were quite similar as evidenced by IR, DSC and SAXS measurements, there were slight differences in their crystallinity (DSC crystallinity ranging from 52 to 61%), which were connected with processing conditions, such as the total radiation dose, thermal treatment and/or addition of biocompatible stabilizers. Mechanical properties were assessed at all length scales, using macroscale compression testing, non-instrumented and instrumented microindentation hardness testing (at loading forces ~500 mN), and nanoindentation hardness testing measured at both higher and lower loading (~4 mN and ~0.6 mN, respectively). In agreement with theoretical predictions, we found linear correlations between UHMWPE crystallinity and its stiffness-related properties (elastic moduli, yield stress, and hardness) at all length scales (macro-, micro- and nanoscale). Detailed statistical evaluation of our dataset showed that the accuracy and precision of the applied methods decreased in the following order: non-instrumented microindentation ≥ instrumented microindentation ≥ macromechanical properties ≥ nanoindentation measured at higher loading forces ≫ nanoindentation measured at lower loading forces. The results confirm that microindentation and nanoindentation at sufficiently high loading forces are reliable methods, suitable for UHMWPE characterization.
650    _2
$a testování materiálů $7 D008422
650    12
$a polyethyleny $7 D011095
650    _2
$a maloúhlový rozptyl $7 D053838
650    _2
$a difrakce rentgenového záření $7 D014961
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Arevalo, Sofia $u Department of Mechanical Engineering, University of California, 5134 Etcheverry Hall, Berkeley, CA, 94720, United States
700    1_
$a Vlkova, Helena $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nam. 2, 162 06, Prague 6, Czech Republic
700    1_
$a Gajdosova, Veronika $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nam. 2, 162 06, Prague 6, Czech Republic
700    1_
$a Kralik, Vlastimil $u Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07, Prague 6, Czech Republic
700    1_
$a Pruitt, Lisa $u Department of Mechanical Engineering, University of California, 5134 Etcheverry Hall, Berkeley, CA, 94720, United States. Electronic address: lpruitt@berkeley.edu
773    0_
$w MED00166961 $t Journal of the mechanical behavior of biomedical materials $x 1878-0180 $g Roč. 120, č. - (2021), s. 104205
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34058599 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211013 $b ABA008
991    __
$a 20211026134018 $b ABA008
999    __
$a ok $b bmc $g 1714334 $s 1145742
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 120 $c - $d 104205 $e 20201117 $i 1878-0180 $m Journal of the mechanical behavior of biomedical materials $n J Mech Behav Biomed Mater $x MED00166961
LZP    __
$a Pubmed-20211013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...