Whole-genome optical mapping of bone-marrow myeloma cells reveals association of extramedullary multiple myeloma with chromosome 1 abnormalities
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34282158
PubMed Central
PMC8289962
DOI
10.1038/s41598-021-93835-z
PII: 10.1038/s41598-021-93835-z
Knihovny.cz E-zdroje
- MeSH
- buňky kostní dřeně patologie MeSH
- celogenomová asociační studie metody MeSH
- chromozomální aberace * MeSH
- cytogenetické vyšetření metody MeSH
- kohortové studie MeSH
- kostní dřeň diagnostické zobrazování metabolismus patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- lidské chromozomy, pár 1 * genetika MeSH
- mnohočetný myelom genetika patologie MeSH
- pilotní projekty MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Extramedullary disease (EMM) represents a rare, aggressive and mostly resistant phenotype of multiple myeloma (MM). EMM is frequently associated with high-risk cytogenetics, but their complex genomic architecture is largely unexplored. We used whole-genome optical mapping (Saphyr, Bionano Genomics) to analyse the genomic architecture of CD138+ cells isolated from bone-marrow aspirates from an unselected cohort of newly diagnosed patients with EMM (n = 4) and intramedullary MM (n = 7). Large intrachromosomal rearrangements (> 5 Mbp) within chromosome 1 were detected in all EMM samples. These rearrangements, predominantly deletions with/without inversions, encompassed hundreds of genes and led to changes in the gene copy number on large regions of chromosome 1. Compared with intramedullary MM, EMM was characterised by more deletions (size range of 500 bp-50 kbp) and fewer interchromosomal translocations, and two EMM samples had copy number loss in the 17p13 region. Widespread genomic heterogeneity and novel aberrations in the high-risk IGH/IGK/IGL, 8q24 and 13q14 regions were detected in individual patients but were not specific to EMM/MM. Our pilot study revealed an association of chromosome 1 abnormalities in bone marrow myeloma cells with extramedullary progression. Optical mapping showed the potential for refining the complex genomic architecture in MM and its phenotypes.
Zobrazit více v PubMed
Bhutani M, Foureau DM, Atrash S, Voorhees PM, Usmani SZ. Extramedullary multiple myeloma. Leukemia. 2020;34:1–20. doi: 10.1038/s41375-019-0660-0. PubMed DOI
Paquin AR, et al. Overall survival of transplant eligible patients with newly diagnosed multiple myeloma: Comparative effectiveness analysis of modern induction regimens on outcome. Blood Cancer J. 2018;8:125. doi: 10.1038/s41408-018-0163-7. PubMed DOI PMC
Usmani SZ, et al. Extramedullary disease portends poor prognosis in multiple myeloma and is over-represented in high-risk disease even in the era of novel agents. Haematologica. 2012;97:1761–1767. doi: 10.3324/haematol.2012.065698. PubMed DOI PMC
Qu X, et al. Extramedullary manifestation in multiple myeloma bears high incidence of poor cytogenetic aberration and novel agents resistance. Biomed. Res. Int. 2015;2015:787809. doi: 10.1155/2015/787809. PubMed DOI PMC
Jagosky MH, Usmani SZ. Extramedullary disease in multiple myeloma. Curr. Hematol. Malig. Rep. 2020;15:62–71. doi: 10.1007/s11899-020-00568-3. PubMed DOI
Bladé J, et al. Soft-tissue plasmacytomas in multiple myeloma: Incidence, mechanisms of extramedullary spread, and treatment approach. J. Clin. Oncol. 2011;29:3805–3812. doi: 10.1200/JCO.2011.34.9290. PubMed DOI
Billecke L, et al. Cytogenetics of extramedullary manifestations in multiple myeloma. Br. J. Haematol. 2013;161:87–94. doi: 10.1111/bjh.12223. PubMed DOI
Varga C, et al. Development of extramedullary myeloma in the era of novel agents: No evidence of increased risk with lenalidomide-bortezomib combinations. Br. J. Haematol. 2015;169:843–850. doi: 10.1111/bjh.13382. PubMed DOI
de Haart SJ, et al. Comparison of intramedullary myeloma and corresponding extramedullary soft tissue plasmacytomas using genetic mutational panel analyses. Blood Cancer J. 2016;6:e426. doi: 10.1038/bcj.2016.35. PubMed DOI PMC
Egan JB, et al. Extramedullary myeloma whole genome sequencing reveals novel mutations in Cereblon, proteasome subunit G2 and the glucocorticoid receptor in multi drug resistant disease. Br. J. Haematol. 2013;161:748–751. doi: 10.1111/bjh.12291. PubMed DOI PMC
Furukawa Y, Kikuchi J. Molecular basis of clonal evolution in multiple myeloma. Int. J. Hematol. 2020;111:496–511. doi: 10.1007/s12185-020-02829-6. PubMed DOI
Dahl IMS, Rasmussen T, Kauric G, Husebekk A. Differential expression of CD56 and CD44 in the evolution of extramedullary myeloma. Br. J. Haematol. 2002;116:273–277. doi: 10.1046/j.1365-2141.2002.03258.x. PubMed DOI
Rasche L, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat. Commun. 2017;8:268. doi: 10.1038/s41467-017-00296-y. PubMed DOI PMC
Neveling K, et al. Next generation cytogenetics: comprehensive assessment of 48 leukemia genomes by genome imaging. bioRxiv. 2020 doi: 10.1101/2020.02.06.935742. DOI
Rajkumar SV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–e548. doi: 10.1016/S1470-2045(14)70442-5. PubMed DOI
Bionano Genomics. Bionano prep SP fresh cells dna isolation protocol (revision D). Document Number: 30257. https://bionanogenomics.com/wp-content/uploads/2019/04/30257-Bionano-Prep-SP-Fresh-Cells-DNA-Isolation-Protocol.pdf (2020).
Bionano Genomics. Bionano prep Direct Label and Stain (DLS) Protocol (revision F). Document Number: 30206. https://bionanogenomics.com/wp-content/uploads/2018/04/30206-Bionano-Prep-Direct-Label-and-Stain-DLS-Protocol.pdf (2019).
Bionano Genomics. Saphyr system user guide (revision C). Document Number: 30143. https://bionanogenomics.com/wp-content/uploads/2017/10/30143-Saphyr-System-User-Guide.pdf (2018).
Bionano Genomics. Introduction to copy number analysis (revision D). Document Number: 30210. https://bionanogenomics.com/wp-content/uploads/2018/04/30210-Introduction-to-Copy-Number-Analysis.pdf (2019).
Bionano Genomics. Bionano solve theory of operation: structural variant calling (revision J). Document Number: 30110. https://bionanogenomics.com/wp-content/uploads/2018/04/30110-Bionano-Solve-Theory-of-Operation-Structural-Variant-Calling.pdf (2020).
Bionano Genomics. Bionano solve theory of operation: variant annotation pipeline (revision H). Document Number: 30190. https://bionanogenomics.com/wp-content/uploads/2018/04/30190-Bionano-Solve-Theory-of-Operation-Variant-Annotation-Pipeline.pdf (2020).
Savara, J., Novosád, T., Gajdoš, P. & Kriegova, E. Comparison of structural variants detected by optical mapping with long-read next-generation sequencing. Bioinformatics. 10.1093/bioinformatics/btab359 (2021). PubMed
Petrackova A, et al. Diagnostic deep-targeted next-generation sequencing assessment of TP53 gene mutations in multiple myeloma from the whole bone marrow. Br. J. Haematol. 2020;189:e122–e125. doi: 10.1111/bjh.16547. PubMed DOI
Obr A, et al. TP53 mutation and complex karyotype portends a dismal prognosis in patients with mantle cell lymphoma. Clin. Lymphoma Myeloma Leuk. 2018;18:762–768. doi: 10.1016/j.clml.2018.07.282. PubMed DOI
Mlynarcikova M, et al. Molecular cytogenetic analysis of chromosome 8 aberrations in patients with multiple myeloma examined in 2 different stages, at diagnosis and at progression/relapse. Clin. Lymphoma Myeloma Leuk. 2016;16:358–365. doi: 10.1016/j.clml.2016.02.038. PubMed DOI
Kruzova L, et al. Complex karyotype as a predictor of high-risk chronic lymphocytic leukemia: A single center experience over 12 years. Leuk. Res. 2019;85:106218. doi: 10.1016/j.leukres.2019.106218. PubMed DOI
Lee N, et al. Discrepancies between the percentage of plasma cells in bone marrow aspiration and BM biopsy: Impact on the revised IMWG diagnostic criteria of multiple myeloma. Blood Cancer J. 2017;7:e530. doi: 10.1038/bcj.2017.14. PubMed DOI PMC
Gu Z, Gu L, Eils R, Schlesner M, Brors B. Circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30:2811–2812. doi: 10.1093/bioinformatics/btu393. PubMed DOI
Ye CJ, Chen J, Liu G, Heng HH. Somatic genomic mosaicism in multiple myeloma. Front. Genet. 2020;11:388. doi: 10.3389/fgene.2020.00388. PubMed DOI PMC
Lohr JG, et al. Widespread genetic heterogeneity in multiple myeloma: Implications for targeted therapy. Cancer Cell. 2014;25:91–101. doi: 10.1016/j.ccr.2013.12.015. PubMed DOI PMC
Chan EKF, et al. Optical mapping reveals a higher level of genomic architecture of chained fusions in cancer. Genome Res. 2018;28:726–738. doi: 10.1101/gr.227975.117. PubMed DOI PMC
Mantere T, et al. Next generation cytogenetics: Genome-imaging enables comprehensive structural variant detection for 100 constitutional chromosomal aberrations in 85 samples. bioRxiv. 2020 doi: 10.1101/2020.07.15.205245. DOI
Xu J, et al. An integrated framework for genome analysis reveals numerous previously unrecognizable structural variants in leukemia patients’ samples. bioRxiv. 2019 doi: 10.1101/563270. DOI
Walker BA, et al. Characterization of IGH locus breakpoints in multiple myeloma indicates a subset of translocations appear to occur in pregerminal center B cells. Blood. 2013;121:3413–3419. doi: 10.1182/blood-2012-12-471888. PubMed DOI
Bolli N, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32:2604–2616. doi: 10.1038/s41375-018-0037-9. PubMed DOI PMC
Bolli N, et al. Next-generation sequencing for clinical management of multiple myeloma: Ready for prime time? Front. Oncol. 2020;10:189. doi: 10.3389/fonc.2020.00189. PubMed DOI PMC
Berry NK, Bain NL, Enjeti AK, Rowlings P. Genomic profiling of plasma cell disorders in a clinical setting: Integration of microar-ray and FISH, after CD138 selection of bone marrow. J. Clin. Pathol. 2014;67:66–69. doi: 10.1136/jclinpath-2013-201691. PubMed DOI PMC
Walker BA. Whole exome sequencing in multiple myeloma to identify somatic single nucleotide variants and key translocations involving immunoglobulin loci and MYC. Methods Mol. Biol. 2018;1792:71–95. doi: 10.1007/978-1-4939-7865-6_6. PubMed DOI
Schardin M, Cremer T, Hager HD, Lang M. Specific staining of human chromosomes in Chinese hamster × man hybrid cell lines demonstrates interphase chromosome territories. Hum. Genet. 1985;71:281–287. doi: 10.1007/BF00388452. PubMed DOI
Parada L, Misteli T. Chromosome positioning in the interphase nucleus. Trends Cell Biol. 2002;12:425–432. doi: 10.1016/S0962-8924(02)02351-6. PubMed DOI
Gandhi MS, Stringer JR, Nikiforova MN, Medvedovic M, Nikiforov YE. Gene position within chromosome territories correlates with their involvement in distinct rearrangement types in thyroid cancer cells. Genes Chromosom. Cancer. 2009;48:222–228. doi: 10.1002/gcc.20639. PubMed DOI PMC
Sathitruangsak C, et al. Distinct and shared three-dimensional chromosome organization patterns in lymphocytes, monoclonal gammopathy of undetermined significance and multiple myeloma. Int. J. Cancer. 2017;140:400–410. doi: 10.1002/ijc.30461. PubMed DOI PMC
Martin LD, Harizanova J, Mai S, Belch AR, Pilarski LM. FGFR3 preferentially colocalizes with IGH in the interphase nucleus of multiple myeloma patient B-cells when FGFR3 is located outside of CT4. Genes Chromosom. Cancer. 2016;55:962–974. doi: 10.1002/gcc.22394. PubMed DOI
Neparidze N, Brown JE. Clinical outcomes of extramedullary multiple myeloma in the era of novel agents. Blood. 2017;130:5438.
Liu Y, et al. Genetic basis of extramedullary plasmablastic transformation of multiple myeloma. Am. J. Surg. Pathol. 2020;44:838–848. doi: 10.1097/PAS.0000000000001459. PubMed DOI PMC
Marzin Y, et al. Chromosome 1 abnormalities in multiple myeloma. Anticancer Res. 2006;26:953–959. PubMed
Giri S, et al. Chromosome 1 abnormalities and survival of patients with multiple myeloma in the era of novel agents. Blood Adv. 2020;4:2245–2253. doi: 10.1182/bloodadvances.2019001425. PubMed DOI PMC
Shaughnessy JD, Jr, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109:2276–2284. doi: 10.1182/blood-2006-07-038430. PubMed DOI
Gupta A, et al. Single-molecule analysis reveals widespread structural variation in multiple myeloma. Proc. Natl. Acad. Sci. USA. 2015;112:7689–7694. doi: 10.1073/pnas.1418577112. PubMed DOI PMC
Barwick BG, et al. Multiple myeloma immunoglobulin lambda translocations portend poor prognosis. Nat. Commun. 2019;10:1911. doi: 10.1038/s41467-019-09555-6. PubMed DOI PMC
Deng S, et al. Features of extramedullary disease of multiple myeloma: high frequency of p53 deletion and poor survival: A retrospective single-center study of 834 cases. Clin. Lymphoma Myeloma Leuk. 2015;15:286–291. doi: 10.1016/j.clml.2014.12.013. PubMed DOI
Katodritou E, et al. Extramedullary (EMP) relapse in unusual locations in multiple myeloma: Is there an association with precedent thalidomide administration and a correlation of special biological features with treatment and outcome? Leuk. Res. 2009;33:1137–1140. doi: 10.1016/j.leukres.2009.01.036. PubMed DOI
Dimopoulos MA, et al. Treatment of patients with relapsed/refractory multiple myeloma with lenalidomide and dexamethasone with or without bortezomib: Prospective evaluation of the impact of cytogenetic abnormalities and of previous therapies. Leukemia. 2010;24:1769–1778. doi: 10.1038/leu.2010.175. PubMed DOI
Misund K, et al. MYC dysregulation in the progression of multiple myeloma. Leukemia. 2020;34:322–326. doi: 10.1038/s41375-019-0543-4. PubMed DOI PMC
Szabo AG, et al. Overexpression of c-myc is associated with adverse clinical features and worse overall survival in multiple myeloma. Leuk. Lymphoma. 2016;57:2526–2534. doi: 10.1080/10428194.2016.1187275. PubMed DOI
Visram A, et al. Disease monitoring with quantitative serum IgA levels provides a more reliable response assessment in multiple myeloma patients. Leukemia. 2021;35:1428–1437. doi: 10.1038/s41375-021-01180-x. PubMed DOI PMC
Fonseca R, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003;101:4569–4575. doi: 10.1182/blood-2002-10-3017. PubMed DOI
Muddasani R, et al. Association between immunoglobulin isotypes and cytogenetic risk groups in multiple myeloma. Blood. 2018;132:5585. doi: 10.1182/blood-2018-99-118831. DOI
Nair B, et al. Immunoglobulin isotypes in multiple myeloma: Laboratory correlates and prognostic implications in total therapy protocols. Br. J. Haematol. 2009;145:134–137. doi: 10.1111/j.1365-2141.2008.07547.x. PubMed DOI PMC
Jaratlerdsiri W, et al. Next generation mapping reveals novel large genomic rearrangements in prostate cancer. Oncotarget. 2017;8:23588–23602. doi: 10.18632/oncotarget.15802. PubMed DOI PMC
Deschamps S, et al. A chromosome-scale assembly of the sorghum genome using nanopore sequencing and optical mapping. Nat. Commun. 2018;9:4844. doi: 10.1038/s41467-018-07271-1. PubMed DOI PMC
Weissensteiner MH, et al. Combination of short-read, long-read, and optical mapping assemblies reveals large-scale tandem repeat arrays with population genetic implications. Genome Res. 2017;27:697–708. doi: 10.1101/gr.215095.116. PubMed DOI PMC