Whole-genome optical mapping of bone-marrow myeloma cells reveals association of extramedullary multiple myeloma with chromosome 1 abnormalities

. 2021 Jul 19 ; 11 (1) : 14671. [epub] 20210719

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34282158
Odkazy

PubMed 34282158
PubMed Central PMC8289962
DOI 10.1038/s41598-021-93835-z
PII: 10.1038/s41598-021-93835-z
Knihovny.cz E-zdroje

Extramedullary disease (EMM) represents a rare, aggressive and mostly resistant phenotype of multiple myeloma (MM). EMM is frequently associated with high-risk cytogenetics, but their complex genomic architecture is largely unexplored. We used whole-genome optical mapping (Saphyr, Bionano Genomics) to analyse the genomic architecture of CD138+ cells isolated from bone-marrow aspirates from an unselected cohort of newly diagnosed patients with EMM (n = 4) and intramedullary MM (n = 7). Large intrachromosomal rearrangements (> 5 Mbp) within chromosome 1 were detected in all EMM samples. These rearrangements, predominantly deletions with/without inversions, encompassed hundreds of genes and led to changes in the gene copy number on large regions of chromosome 1. Compared with intramedullary MM, EMM was characterised by more deletions (size range of 500 bp-50 kbp) and fewer interchromosomal translocations, and two EMM samples had copy number loss in the 17p13 region. Widespread genomic heterogeneity and novel aberrations in the high-risk IGH/IGK/IGL, 8q24 and 13q14 regions were detected in individual patients but were not specific to EMM/MM. Our pilot study revealed an association of chromosome 1 abnormalities in bone marrow myeloma cells with extramedullary progression. Optical mapping showed the potential for refining the complex genomic architecture in MM and its phenotypes.

Zobrazit více v PubMed

Bhutani M, Foureau DM, Atrash S, Voorhees PM, Usmani SZ. Extramedullary multiple myeloma. Leukemia. 2020;34:1–20. doi: 10.1038/s41375-019-0660-0. PubMed DOI

Paquin AR, et al. Overall survival of transplant eligible patients with newly diagnosed multiple myeloma: Comparative effectiveness analysis of modern induction regimens on outcome. Blood Cancer J. 2018;8:125. doi: 10.1038/s41408-018-0163-7. PubMed DOI PMC

Usmani SZ, et al. Extramedullary disease portends poor prognosis in multiple myeloma and is over-represented in high-risk disease even in the era of novel agents. Haematologica. 2012;97:1761–1767. doi: 10.3324/haematol.2012.065698. PubMed DOI PMC

Qu X, et al. Extramedullary manifestation in multiple myeloma bears high incidence of poor cytogenetic aberration and novel agents resistance. Biomed. Res. Int. 2015;2015:787809. doi: 10.1155/2015/787809. PubMed DOI PMC

Jagosky MH, Usmani SZ. Extramedullary disease in multiple myeloma. Curr. Hematol. Malig. Rep. 2020;15:62–71. doi: 10.1007/s11899-020-00568-3. PubMed DOI

Bladé J, et al. Soft-tissue plasmacytomas in multiple myeloma: Incidence, mechanisms of extramedullary spread, and treatment approach. J. Clin. Oncol. 2011;29:3805–3812. doi: 10.1200/JCO.2011.34.9290. PubMed DOI

Billecke L, et al. Cytogenetics of extramedullary manifestations in multiple myeloma. Br. J. Haematol. 2013;161:87–94. doi: 10.1111/bjh.12223. PubMed DOI

Varga C, et al. Development of extramedullary myeloma in the era of novel agents: No evidence of increased risk with lenalidomide-bortezomib combinations. Br. J. Haematol. 2015;169:843–850. doi: 10.1111/bjh.13382. PubMed DOI

de Haart SJ, et al. Comparison of intramedullary myeloma and corresponding extramedullary soft tissue plasmacytomas using genetic mutational panel analyses. Blood Cancer J. 2016;6:e426. doi: 10.1038/bcj.2016.35. PubMed DOI PMC

Egan JB, et al. Extramedullary myeloma whole genome sequencing reveals novel mutations in Cereblon, proteasome subunit G2 and the glucocorticoid receptor in multi drug resistant disease. Br. J. Haematol. 2013;161:748–751. doi: 10.1111/bjh.12291. PubMed DOI PMC

Furukawa Y, Kikuchi J. Molecular basis of clonal evolution in multiple myeloma. Int. J. Hematol. 2020;111:496–511. doi: 10.1007/s12185-020-02829-6. PubMed DOI

Dahl IMS, Rasmussen T, Kauric G, Husebekk A. Differential expression of CD56 and CD44 in the evolution of extramedullary myeloma. Br. J. Haematol. 2002;116:273–277. doi: 10.1046/j.1365-2141.2002.03258.x. PubMed DOI

Rasche L, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat. Commun. 2017;8:268. doi: 10.1038/s41467-017-00296-y. PubMed DOI PMC

Neveling K, et al. Next generation cytogenetics: comprehensive assessment of 48 leukemia genomes by genome imaging. bioRxiv. 2020 doi: 10.1101/2020.02.06.935742. DOI

Rajkumar SV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–e548. doi: 10.1016/S1470-2045(14)70442-5. PubMed DOI

Bionano Genomics. Bionano prep SP fresh cells dna isolation protocol (revision D). Document Number: 30257. https://bionanogenomics.com/wp-content/uploads/2019/04/30257-Bionano-Prep-SP-Fresh-Cells-DNA-Isolation-Protocol.pdf (2020).

Bionano Genomics. Bionano prep Direct Label and Stain (DLS) Protocol (revision F). Document Number: 30206. https://bionanogenomics.com/wp-content/uploads/2018/04/30206-Bionano-Prep-Direct-Label-and-Stain-DLS-Protocol.pdf (2019).

Bionano Genomics. Saphyr system user guide (revision C). Document Number: 30143. https://bionanogenomics.com/wp-content/uploads/2017/10/30143-Saphyr-System-User-Guide.pdf (2018).

Bionano Genomics. Introduction to copy number analysis (revision D). Document Number: 30210. https://bionanogenomics.com/wp-content/uploads/2018/04/30210-Introduction-to-Copy-Number-Analysis.pdf (2019).

Bionano Genomics. Bionano solve theory of operation: structural variant calling (revision J). Document Number: 30110. https://bionanogenomics.com/wp-content/uploads/2018/04/30110-Bionano-Solve-Theory-of-Operation-Structural-Variant-Calling.pdf (2020).

Bionano Genomics. Bionano solve theory of operation: variant annotation pipeline (revision H). Document Number: 30190. https://bionanogenomics.com/wp-content/uploads/2018/04/30190-Bionano-Solve-Theory-of-Operation-Variant-Annotation-Pipeline.pdf (2020).

Savara, J., Novosád, T., Gajdoš, P. & Kriegova, E. Comparison of structural variants detected by optical mapping with long-read next-generation sequencing. Bioinformatics. 10.1093/bioinformatics/btab359 (2021). PubMed

Petrackova A, et al. Diagnostic deep-targeted next-generation sequencing assessment of TP53 gene mutations in multiple myeloma from the whole bone marrow. Br. J. Haematol. 2020;189:e122–e125. doi: 10.1111/bjh.16547. PubMed DOI

Obr A, et al. TP53 mutation and complex karyotype portends a dismal prognosis in patients with mantle cell lymphoma. Clin. Lymphoma Myeloma Leuk. 2018;18:762–768. doi: 10.1016/j.clml.2018.07.282. PubMed DOI

Mlynarcikova M, et al. Molecular cytogenetic analysis of chromosome 8 aberrations in patients with multiple myeloma examined in 2 different stages, at diagnosis and at progression/relapse. Clin. Lymphoma Myeloma Leuk. 2016;16:358–365. doi: 10.1016/j.clml.2016.02.038. PubMed DOI

Kruzova L, et al. Complex karyotype as a predictor of high-risk chronic lymphocytic leukemia: A single center experience over 12 years. Leuk. Res. 2019;85:106218. doi: 10.1016/j.leukres.2019.106218. PubMed DOI

Lee N, et al. Discrepancies between the percentage of plasma cells in bone marrow aspiration and BM biopsy: Impact on the revised IMWG diagnostic criteria of multiple myeloma. Blood Cancer J. 2017;7:e530. doi: 10.1038/bcj.2017.14. PubMed DOI PMC

Gu Z, Gu L, Eils R, Schlesner M, Brors B. Circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30:2811–2812. doi: 10.1093/bioinformatics/btu393. PubMed DOI

Ye CJ, Chen J, Liu G, Heng HH. Somatic genomic mosaicism in multiple myeloma. Front. Genet. 2020;11:388. doi: 10.3389/fgene.2020.00388. PubMed DOI PMC

Lohr JG, et al. Widespread genetic heterogeneity in multiple myeloma: Implications for targeted therapy. Cancer Cell. 2014;25:91–101. doi: 10.1016/j.ccr.2013.12.015. PubMed DOI PMC

Chan EKF, et al. Optical mapping reveals a higher level of genomic architecture of chained fusions in cancer. Genome Res. 2018;28:726–738. doi: 10.1101/gr.227975.117. PubMed DOI PMC

Mantere T, et al. Next generation cytogenetics: Genome-imaging enables comprehensive structural variant detection for 100 constitutional chromosomal aberrations in 85 samples. bioRxiv. 2020 doi: 10.1101/2020.07.15.205245. DOI

Xu J, et al. An integrated framework for genome analysis reveals numerous previously unrecognizable structural variants in leukemia patients’ samples. bioRxiv. 2019 doi: 10.1101/563270. DOI

Walker BA, et al. Characterization of IGH locus breakpoints in multiple myeloma indicates a subset of translocations appear to occur in pregerminal center B cells. Blood. 2013;121:3413–3419. doi: 10.1182/blood-2012-12-471888. PubMed DOI

Bolli N, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32:2604–2616. doi: 10.1038/s41375-018-0037-9. PubMed DOI PMC

Bolli N, et al. Next-generation sequencing for clinical management of multiple myeloma: Ready for prime time? Front. Oncol. 2020;10:189. doi: 10.3389/fonc.2020.00189. PubMed DOI PMC

Berry NK, Bain NL, Enjeti AK, Rowlings P. Genomic profiling of plasma cell disorders in a clinical setting: Integration of microar-ray and FISH, after CD138 selection of bone marrow. J. Clin. Pathol. 2014;67:66–69. doi: 10.1136/jclinpath-2013-201691. PubMed DOI PMC

Walker BA. Whole exome sequencing in multiple myeloma to identify somatic single nucleotide variants and key translocations involving immunoglobulin loci and MYC. Methods Mol. Biol. 2018;1792:71–95. doi: 10.1007/978-1-4939-7865-6_6. PubMed DOI

Schardin M, Cremer T, Hager HD, Lang M. Specific staining of human chromosomes in Chinese hamster × man hybrid cell lines demonstrates interphase chromosome territories. Hum. Genet. 1985;71:281–287. doi: 10.1007/BF00388452. PubMed DOI

Parada L, Misteli T. Chromosome positioning in the interphase nucleus. Trends Cell Biol. 2002;12:425–432. doi: 10.1016/S0962-8924(02)02351-6. PubMed DOI

Gandhi MS, Stringer JR, Nikiforova MN, Medvedovic M, Nikiforov YE. Gene position within chromosome territories correlates with their involvement in distinct rearrangement types in thyroid cancer cells. Genes Chromosom. Cancer. 2009;48:222–228. doi: 10.1002/gcc.20639. PubMed DOI PMC

Sathitruangsak C, et al. Distinct and shared three-dimensional chromosome organization patterns in lymphocytes, monoclonal gammopathy of undetermined significance and multiple myeloma. Int. J. Cancer. 2017;140:400–410. doi: 10.1002/ijc.30461. PubMed DOI PMC

Martin LD, Harizanova J, Mai S, Belch AR, Pilarski LM. FGFR3 preferentially colocalizes with IGH in the interphase nucleus of multiple myeloma patient B-cells when FGFR3 is located outside of CT4. Genes Chromosom. Cancer. 2016;55:962–974. doi: 10.1002/gcc.22394. PubMed DOI

Neparidze N, Brown JE. Clinical outcomes of extramedullary multiple myeloma in the era of novel agents. Blood. 2017;130:5438.

Liu Y, et al. Genetic basis of extramedullary plasmablastic transformation of multiple myeloma. Am. J. Surg. Pathol. 2020;44:838–848. doi: 10.1097/PAS.0000000000001459. PubMed DOI PMC

Marzin Y, et al. Chromosome 1 abnormalities in multiple myeloma. Anticancer Res. 2006;26:953–959. PubMed

Giri S, et al. Chromosome 1 abnormalities and survival of patients with multiple myeloma in the era of novel agents. Blood Adv. 2020;4:2245–2253. doi: 10.1182/bloodadvances.2019001425. PubMed DOI PMC

Shaughnessy JD, Jr, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109:2276–2284. doi: 10.1182/blood-2006-07-038430. PubMed DOI

Gupta A, et al. Single-molecule analysis reveals widespread structural variation in multiple myeloma. Proc. Natl. Acad. Sci. USA. 2015;112:7689–7694. doi: 10.1073/pnas.1418577112. PubMed DOI PMC

Barwick BG, et al. Multiple myeloma immunoglobulin lambda translocations portend poor prognosis. Nat. Commun. 2019;10:1911. doi: 10.1038/s41467-019-09555-6. PubMed DOI PMC

Deng S, et al. Features of extramedullary disease of multiple myeloma: high frequency of p53 deletion and poor survival: A retrospective single-center study of 834 cases. Clin. Lymphoma Myeloma Leuk. 2015;15:286–291. doi: 10.1016/j.clml.2014.12.013. PubMed DOI

Katodritou E, et al. Extramedullary (EMP) relapse in unusual locations in multiple myeloma: Is there an association with precedent thalidomide administration and a correlation of special biological features with treatment and outcome? Leuk. Res. 2009;33:1137–1140. doi: 10.1016/j.leukres.2009.01.036. PubMed DOI

Dimopoulos MA, et al. Treatment of patients with relapsed/refractory multiple myeloma with lenalidomide and dexamethasone with or without bortezomib: Prospective evaluation of the impact of cytogenetic abnormalities and of previous therapies. Leukemia. 2010;24:1769–1778. doi: 10.1038/leu.2010.175. PubMed DOI

Misund K, et al. MYC dysregulation in the progression of multiple myeloma. Leukemia. 2020;34:322–326. doi: 10.1038/s41375-019-0543-4. PubMed DOI PMC

Szabo AG, et al. Overexpression of c-myc is associated with adverse clinical features and worse overall survival in multiple myeloma. Leuk. Lymphoma. 2016;57:2526–2534. doi: 10.1080/10428194.2016.1187275. PubMed DOI

Visram A, et al. Disease monitoring with quantitative serum IgA levels provides a more reliable response assessment in multiple myeloma patients. Leukemia. 2021;35:1428–1437. doi: 10.1038/s41375-021-01180-x. PubMed DOI PMC

Fonseca R, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003;101:4569–4575. doi: 10.1182/blood-2002-10-3017. PubMed DOI

Muddasani R, et al. Association between immunoglobulin isotypes and cytogenetic risk groups in multiple myeloma. Blood. 2018;132:5585. doi: 10.1182/blood-2018-99-118831. DOI

Nair B, et al. Immunoglobulin isotypes in multiple myeloma: Laboratory correlates and prognostic implications in total therapy protocols. Br. J. Haematol. 2009;145:134–137. doi: 10.1111/j.1365-2141.2008.07547.x. PubMed DOI PMC

Jaratlerdsiri W, et al. Next generation mapping reveals novel large genomic rearrangements in prostate cancer. Oncotarget. 2017;8:23588–23602. doi: 10.18632/oncotarget.15802. PubMed DOI PMC

Deschamps S, et al. A chromosome-scale assembly of the sorghum genome using nanopore sequencing and optical mapping. Nat. Commun. 2018;9:4844. doi: 10.1038/s41467-018-07271-1. PubMed DOI PMC

Weissensteiner MH, et al. Combination of short-read, long-read, and optical mapping assemblies reveals large-scale tandem repeat arrays with population genetic implications. Genome Res. 2017;27:697–708. doi: 10.1101/gr.215095.116. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...