Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Procyclic trypanosomes recycle glucose catabolites and TCA cycle intermediates to stimulate growth in the presence of physiological amounts of proline

O. Villafraz, M. Biran, E. Pineda, N. Plazolles, E. Cahoreau, R. Ornitz Oliveira Souza, M. Thonnus, S. Allmann, E. Tetaud, L. Rivière, AM. Silber, MP. Barrett, A. Zíková, M. Boshart, JC. Portais, F. Bringaud

. 2021 ; 17 (3) : e1009204. [pub] 20210301

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
104111/Z/14/Z Wellcome Trust - United Kingdom

Trypanosoma brucei, a protist responsible for human African trypanosomiasis (sleeping sickness), is transmitted by the tsetse fly where the procyclic forms of the parasite develop in the proline-rich (1-2 mM) and glucose-depleted digestive tract. Proline is essential for the midgut colonization of the parasite in the insect vector, however other carbon sources could be available and used to feed its central metabolism. Here we show that procyclic trypanosomes can consume and metabolize metabolic intermediates, including those excreted from glucose catabolism (succinate, alanine and pyruvate), with the exception of acetate, which is the ultimate end-product excreted by the parasite. Among the tested metabolites, tricarboxylic acid (TCA) cycle intermediates (succinate, malate and α-ketoglutarate) stimulated growth of the parasite in the presence of 2 mM proline. The pathways used for their metabolism were mapped by proton-NMR metabolic profiling and phenotypic analyses of thirteen RNAi and/or null mutants affecting central carbon metabolism. We showed that (i) malate is converted to succinate by both the reducing and oxidative branches of the TCA cycle, which demonstrates that procyclic trypanosomes can use the full TCA cycle, (ii) the enormous rate of α-ketoglutarate consumption (15-times higher than glucose) is possible thanks to the balanced production and consumption of NADH at the substrate level and (iii) α-ketoglutarate is toxic for trypanosomes if not appropriately metabolized as observed for an α-ketoglutarate dehydrogenase null mutant. In addition, epimastigotes produced from procyclics upon overexpression of RBP6 showed a growth defect in the presence of 2 mM proline, which is rescued by α-ketoglutarate, suggesting that physiological amounts of proline are not sufficient per se for the development of trypanosomes in the fly. In conclusion, these data show that trypanosomes can metabolize multiple metabolites, in addition to proline, which allows them to confront challenging environments in the fly.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21026042
003      
CZ-PrNML
005      
20211026133244.0
007      
ta
008      
211013s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.ppat.1009204 $2 doi
035    __
$a (PubMed)33647053
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Villafraz, Oriana $u Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
245    10
$a Procyclic trypanosomes recycle glucose catabolites and TCA cycle intermediates to stimulate growth in the presence of physiological amounts of proline / $c O. Villafraz, M. Biran, E. Pineda, N. Plazolles, E. Cahoreau, R. Ornitz Oliveira Souza, M. Thonnus, S. Allmann, E. Tetaud, L. Rivière, AM. Silber, MP. Barrett, A. Zíková, M. Boshart, JC. Portais, F. Bringaud
520    9_
$a Trypanosoma brucei, a protist responsible for human African trypanosomiasis (sleeping sickness), is transmitted by the tsetse fly where the procyclic forms of the parasite develop in the proline-rich (1-2 mM) and glucose-depleted digestive tract. Proline is essential for the midgut colonization of the parasite in the insect vector, however other carbon sources could be available and used to feed its central metabolism. Here we show that procyclic trypanosomes can consume and metabolize metabolic intermediates, including those excreted from glucose catabolism (succinate, alanine and pyruvate), with the exception of acetate, which is the ultimate end-product excreted by the parasite. Among the tested metabolites, tricarboxylic acid (TCA) cycle intermediates (succinate, malate and α-ketoglutarate) stimulated growth of the parasite in the presence of 2 mM proline. The pathways used for their metabolism were mapped by proton-NMR metabolic profiling and phenotypic analyses of thirteen RNAi and/or null mutants affecting central carbon metabolism. We showed that (i) malate is converted to succinate by both the reducing and oxidative branches of the TCA cycle, which demonstrates that procyclic trypanosomes can use the full TCA cycle, (ii) the enormous rate of α-ketoglutarate consumption (15-times higher than glucose) is possible thanks to the balanced production and consumption of NADH at the substrate level and (iii) α-ketoglutarate is toxic for trypanosomes if not appropriately metabolized as observed for an α-ketoglutarate dehydrogenase null mutant. In addition, epimastigotes produced from procyclics upon overexpression of RBP6 showed a growth defect in the presence of 2 mM proline, which is rescued by α-ketoglutarate, suggesting that physiological amounts of proline are not sufficient per se for the development of trypanosomes in the fly. In conclusion, these data show that trypanosomes can metabolize multiple metabolites, in addition to proline, which allows them to confront challenging environments in the fly.
650    _2
$a zvířata $7 D000818
650    _2
$a citrátový cyklus $x účinky léků $7 D002952
650    _2
$a glukosa $x metabolismus $7 D005947
650    _2
$a hmyz - vektory $x parazitologie $7 D007303
650    _2
$a oxidace-redukce $x účinky léků $7 D010084
650    _2
$a prolin $x metabolismus $x farmakologie $7 D011392
650    _2
$a RNA interference $x fyziologie $7 D034622
650    _2
$a Trypanosoma $x účinky léků $x metabolismus $7 D014345
650    _2
$a Trypanosoma brucei brucei $x účinky léků $x metabolismus $7 D014346
650    _2
$a trypanozomóza africká $x farmakoterapie $7 D014353
650    _2
$a moucha tse-tse $x účinky léků $x parazitologie $7 D014370
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Biran, Marc $u Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
700    1_
$a Pineda, Erika $u Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
700    1_
$a Plazolles, Nicolas $u Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
700    1_
$a Cahoreau, Edern $u Toulouse Biotechnology Institute, TBI-INSA de Toulouse INSA/CNRS 5504-UMR INSA/INRA 792, Toulouse, France $u MetaToul-MetaboHub, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
700    1_
$a Ornitz Oliveira Souza, Rodolpho $u Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
700    1_
$a Thonnus, Magali $u Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
700    1_
$a Allmann, Stefan $u Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2-4, Martinsried, Germany
700    1_
$a Tetaud, Emmanuel $u Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
700    1_
$a Rivière, Loïc $u Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
700    1_
$a Silber, Ariel M $u Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
700    1_
$a Barrett, Michael P $u Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom $u Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
700    1_
$a Zíková, Alena $u Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
700    1_
$a Boshart, Michael $u Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2-4, Martinsried, Germany
700    1_
$a Portais, Jean-Charles $u Toulouse Biotechnology Institute, TBI-INSA de Toulouse INSA/CNRS 5504-UMR INSA/INRA 792, Toulouse, France $u MetaToul-MetaboHub, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France $u RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, ENVT, Toulouse, France
700    1_
$a Bringaud, Frédéric $u Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
773    0_
$w MED00008922 $t PLoS pathogens $x 1553-7374 $g Roč. 17, č. 3 (2021), s. e1009204
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33647053 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211013 $b ABA008
991    __
$a 20211026133250 $b ABA008
999    __
$a ok $b bmc $g 1714913 $s 1146549
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 17 $c 3 $d e1009204 $e 20210301 $i 1553-7374 $m PLOS pathogens $n PLoS Pathog $x MED00008922
GRA    __
$a 104111/Z/14/Z $p Wellcome Trust $2 United Kingdom
LZP    __
$a Pubmed-20211013

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...