-
Something wrong with this record ?
Procyclic trypanosomes recycle glucose catabolites and TCA cycle intermediates to stimulate growth in the presence of physiological amounts of proline
O. Villafraz, M. Biran, E. Pineda, N. Plazolles, E. Cahoreau, R. Ornitz Oliveira Souza, M. Thonnus, S. Allmann, E. Tetaud, L. Rivière, AM. Silber, MP. Barrett, A. Zíková, M. Boshart, JC. Portais, F. Bringaud
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
104111/Z/14/Z
Wellcome Trust - United Kingdom
NLK
Directory of Open Access Journals
from 2005
Free Medical Journals
from 2005
Public Library of Science (PLoS)
from 2005
PubMed Central
from 2005
Europe PubMed Central
from 2005
ProQuest Central
from 2005-09-01
Open Access Digital Library
from 2005-01-01
Open Access Digital Library
from 2005-09-01
Open Access Digital Library
from 2005-01-01
Medline Complete (EBSCOhost)
from 2005-09-01
Health & Medicine (ProQuest)
from 2005-09-01
- MeSH
- Citric Acid Cycle drug effects MeSH
- Glucose metabolism MeSH
- Insect Vectors parasitology MeSH
- Tsetse Flies drug effects parasitology MeSH
- Oxidation-Reduction drug effects MeSH
- Proline metabolism pharmacology MeSH
- RNA Interference physiology MeSH
- Trypanosoma brucei brucei drug effects metabolism MeSH
- Trypanosoma drug effects metabolism MeSH
- Trypanosomiasis, African drug therapy MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Trypanosoma brucei, a protist responsible for human African trypanosomiasis (sleeping sickness), is transmitted by the tsetse fly where the procyclic forms of the parasite develop in the proline-rich (1-2 mM) and glucose-depleted digestive tract. Proline is essential for the midgut colonization of the parasite in the insect vector, however other carbon sources could be available and used to feed its central metabolism. Here we show that procyclic trypanosomes can consume and metabolize metabolic intermediates, including those excreted from glucose catabolism (succinate, alanine and pyruvate), with the exception of acetate, which is the ultimate end-product excreted by the parasite. Among the tested metabolites, tricarboxylic acid (TCA) cycle intermediates (succinate, malate and α-ketoglutarate) stimulated growth of the parasite in the presence of 2 mM proline. The pathways used for their metabolism were mapped by proton-NMR metabolic profiling and phenotypic analyses of thirteen RNAi and/or null mutants affecting central carbon metabolism. We showed that (i) malate is converted to succinate by both the reducing and oxidative branches of the TCA cycle, which demonstrates that procyclic trypanosomes can use the full TCA cycle, (ii) the enormous rate of α-ketoglutarate consumption (15-times higher than glucose) is possible thanks to the balanced production and consumption of NADH at the substrate level and (iii) α-ketoglutarate is toxic for trypanosomes if not appropriately metabolized as observed for an α-ketoglutarate dehydrogenase null mutant. In addition, epimastigotes produced from procyclics upon overexpression of RBP6 showed a growth defect in the presence of 2 mM proline, which is rescued by α-ketoglutarate, suggesting that physiological amounts of proline are not sufficient per se for the development of trypanosomes in the fly. In conclusion, these data show that trypanosomes can metabolize multiple metabolites, in addition to proline, which allows them to confront challenging environments in the fly.
Institute of Parasitology Biology Center Czech Academy of Sciences České Budějovice Czech Republic
MetaToul MetaboHub National Infrastructure of Metabolomics and Fluxomics Toulouse France
RESTORE Université de Toulouse Inserm U1031 CNRS 5070 UPS EFS ENVT Toulouse France
Univ Bordeaux CNRS Centre de Résonance Magnétique des Systèmes Biologiques UMR 5536 Bordeaux France
Univ Bordeaux CNRS Microbiologie Fondamentale et Pathogénicité UMR 5234 Bordeaux France
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21026042
- 003
- CZ-PrNML
- 005
- 20211026133244.0
- 007
- ta
- 008
- 211013s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.ppat.1009204 $2 doi
- 035 __
- $a (PubMed)33647053
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Villafraz, Oriana $u Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
- 245 10
- $a Procyclic trypanosomes recycle glucose catabolites and TCA cycle intermediates to stimulate growth in the presence of physiological amounts of proline / $c O. Villafraz, M. Biran, E. Pineda, N. Plazolles, E. Cahoreau, R. Ornitz Oliveira Souza, M. Thonnus, S. Allmann, E. Tetaud, L. Rivière, AM. Silber, MP. Barrett, A. Zíková, M. Boshart, JC. Portais, F. Bringaud
- 520 9_
- $a Trypanosoma brucei, a protist responsible for human African trypanosomiasis (sleeping sickness), is transmitted by the tsetse fly where the procyclic forms of the parasite develop in the proline-rich (1-2 mM) and glucose-depleted digestive tract. Proline is essential for the midgut colonization of the parasite in the insect vector, however other carbon sources could be available and used to feed its central metabolism. Here we show that procyclic trypanosomes can consume and metabolize metabolic intermediates, including those excreted from glucose catabolism (succinate, alanine and pyruvate), with the exception of acetate, which is the ultimate end-product excreted by the parasite. Among the tested metabolites, tricarboxylic acid (TCA) cycle intermediates (succinate, malate and α-ketoglutarate) stimulated growth of the parasite in the presence of 2 mM proline. The pathways used for their metabolism were mapped by proton-NMR metabolic profiling and phenotypic analyses of thirteen RNAi and/or null mutants affecting central carbon metabolism. We showed that (i) malate is converted to succinate by both the reducing and oxidative branches of the TCA cycle, which demonstrates that procyclic trypanosomes can use the full TCA cycle, (ii) the enormous rate of α-ketoglutarate consumption (15-times higher than glucose) is possible thanks to the balanced production and consumption of NADH at the substrate level and (iii) α-ketoglutarate is toxic for trypanosomes if not appropriately metabolized as observed for an α-ketoglutarate dehydrogenase null mutant. In addition, epimastigotes produced from procyclics upon overexpression of RBP6 showed a growth defect in the presence of 2 mM proline, which is rescued by α-ketoglutarate, suggesting that physiological amounts of proline are not sufficient per se for the development of trypanosomes in the fly. In conclusion, these data show that trypanosomes can metabolize multiple metabolites, in addition to proline, which allows them to confront challenging environments in the fly.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a citrátový cyklus $x účinky léků $7 D002952
- 650 _2
- $a glukosa $x metabolismus $7 D005947
- 650 _2
- $a hmyz - vektory $x parazitologie $7 D007303
- 650 _2
- $a oxidace-redukce $x účinky léků $7 D010084
- 650 _2
- $a prolin $x metabolismus $x farmakologie $7 D011392
- 650 _2
- $a RNA interference $x fyziologie $7 D034622
- 650 _2
- $a Trypanosoma $x účinky léků $x metabolismus $7 D014345
- 650 _2
- $a Trypanosoma brucei brucei $x účinky léků $x metabolismus $7 D014346
- 650 _2
- $a trypanozomóza africká $x farmakoterapie $7 D014353
- 650 _2
- $a moucha tse-tse $x účinky léků $x parazitologie $7 D014370
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Biran, Marc $u Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
- 700 1_
- $a Pineda, Erika $u Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
- 700 1_
- $a Plazolles, Nicolas $u Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
- 700 1_
- $a Cahoreau, Edern $u Toulouse Biotechnology Institute, TBI-INSA de Toulouse INSA/CNRS 5504-UMR INSA/INRA 792, Toulouse, France $u MetaToul-MetaboHub, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- 700 1_
- $a Ornitz Oliveira Souza, Rodolpho $u Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- 700 1_
- $a Thonnus, Magali $u Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
- 700 1_
- $a Allmann, Stefan $u Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2-4, Martinsried, Germany
- 700 1_
- $a Tetaud, Emmanuel $u Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
- 700 1_
- $a Rivière, Loïc $u Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
- 700 1_
- $a Silber, Ariel M $u Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- 700 1_
- $a Barrett, Michael P $u Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom $u Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- 700 1_
- $a Zíková, Alena $u Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
- 700 1_
- $a Boshart, Michael $u Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2-4, Martinsried, Germany
- 700 1_
- $a Portais, Jean-Charles $u Toulouse Biotechnology Institute, TBI-INSA de Toulouse INSA/CNRS 5504-UMR INSA/INRA 792, Toulouse, France $u MetaToul-MetaboHub, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France $u RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, ENVT, Toulouse, France
- 700 1_
- $a Bringaud, Frédéric $u Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
- 773 0_
- $w MED00008922 $t PLoS pathogens $x 1553-7374 $g Roč. 17, č. 3 (2021), s. e1009204
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33647053 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026133250 $b ABA008
- 999 __
- $a ok $b bmc $g 1714913 $s 1146549
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 17 $c 3 $d e1009204 $e 20210301 $i 1553-7374 $m PLOS pathogens $n PLoS Pathog $x MED00008922
- GRA __
- $a 104111/Z/14/Z $p Wellcome Trust $2 United Kingdom
- LZP __
- $a Pubmed-20211013