Inklisiran je nové hypolipidemikum, založené na principu siRNA. Je podáván injekční formou 1x za půl roku k doposud užívané hypolipidemické léčbě. Inklisiran je zkoumán v rozsáhlém programu ORION. Popisujeme první zkušenosti s léčbou inklisiranem včetně kazuistiky pacientky s familiární hypercholesterolemií. Účinnost a snášenlivost inklisiranu při správné indikaci byla excelentní.
Inclisiran is a novel hypolipidemic drug based on the principle of siRNA. The drug is administered once a half year via subcutaneuos injection. Inclisiran is being studied in the ORION program. We describe a clinical case of a woman with familiar hypercholesterolemia. When indicated properly, the efficacy of inclisiran is excellent and the drug is well tolerated.
- Keywords
- inclisiran,
- MeSH
- Dyslipidemias * drug therapy MeSH
- Cardiovascular Diseases drug therapy prevention & control MeSH
- Clinical Studies as Topic MeSH
- Cholesterol, LDL analysis drug effects MeSH
- Humans MeSH
- RNA, Small Interfering * pharmacology therapeutic use MeSH
- RNA Interference physiology drug effects MeSH
- Check Tag
- Humans MeSH
Dyslipidemie je nejčastější metabolickou poruchou v západní společnosti a hlavním rizikovým faktorem pro rozvoj ischemické choroby srdeční (ICHS). Léčba dyslipidemie je stále nedostatečná a doporučené cíle LDL cholesterolu jsou dosahovány jen u malé části pacientů. Nejdůležitější skupinou léků pro léčbu dyslipidemie jsou statiny. Ačkoli jde zřejmě o jednu z nejbezpečnějších lékových skupin vůbec, terapie statiny může vést ke svalovým bolestem a ke zvýšenému riziku rozvoje diabetes mellitus (DM). Přerušení nebo ukončení léčby statiny je v klinické praxi časté, statiny jsou také často předmětem negativních sdělení v médiích. Inklisiran je modifikovaný oligonukleotid fungující na principu interference RNA. Inhibuje translaci mRNA pro proprotein konvertázu subtilisin/kexin typu 9 (PCSK9), což vede k dlouhodobému poklesu koncentrace LDL cholesterolu. Účinek inklisiranu se snižuje o přibližně 2 % měsíčně, takže efekt jediné dávky trvá zhruba dva roky. Při podávání jedenkrát za šest měsíců vede terapie tímto lékem k poklesu LDL cholesterolu o 50-55 %, u vybraných pacientů potom až o 65 %. Terapie inklisiranem není spojena se změnou počtu krevní destiček, lymfocytů, monocytů nebo neutrofilů, nevede ke změnám koncentrací cirkulujících cytokinů tumor nekrotizujícího faktoru alfa (TNFα) nebo interleukinu 6 (IL-6) a není spojena s indukcí tvorby protilátek proti tomuto léku. Nežádoucí reakce v místě vpichu tak zůstávají jediným relevantním nežádoucím účinkem této léčby. Inklisiran tak získává potenciál stát se široce preskribovaným lékem, který výrazně přispěje k léčbě dyslipidemie a v konečném důsledku povede ke snížení incidence a prevalence ICHS.
Dyslipidemia is the most frequent metabolic abnormality in western world population and a major risk factor for coronary artery disease (CAD) development. Dyslipidemia treatment is still insufficient and achieving target LDL-level infrequent. Statins are a cornerstone of dyslipidemia management. Although statins are one of the safest drugs on the market, statin therapy can be associated with muscle symptoms and increased risk of DM development. Statin discontinuation is frequent, often driven by negative media coverage. Inclisiran is a therapeutic oligonucleotide that employs RNA interference and inhibits the translation of PCSK9-mRNA leading to long-lasting LDL-cholesterol lowering. LDL-cholesterol-lowering effect of inclisiran is reversed at the rate of approximately 2% per month, so the effect of a single dose persists up to approximately two years. When administered once every six months, inclisiran therapy decreases the level circulating LDL-cholesterol by 50-55% and up to 65% in selected patient populations. Inclisiran therapy is not associated with alterations in platelet count, blood lymphocyte, monocyte or neu- trophil count, does not cause alterations in blood TNF-alpha or IL-6 concentrations and does not induce relevant anti-drug antibodies. The only relevant side effect is an adverse reaction at the injection site. In- clisiran thus has the potential to become widely prescribed drug that will greatly contribute to dyslipidemia management and further decrease of CAD incidence.
- Keywords
- inclisiran,
- MeSH
- Dyslipidemias * drug therapy MeSH
- Cardiology trends MeSH
- Cardiovascular Agents * administration & dosage pharmacology MeSH
- Cardiovascular Diseases drug therapy MeSH
- Cholesterol, LDL analysis drug effects MeSH
- Humans MeSH
- Oligonucleotides administration & dosage pharmacology MeSH
- PCSK9 Inhibitors administration & dosage pharmacology MeSH
- RNA Interference physiology MeSH
- RNA physiology MeSH
- Treatment Outcome MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH
Dyslipidemie je nejčastější metabolickou poruchou v industrializovaném světě a hlavním rizikovým faktorem pro rozvoj ischemické choroby srdeční (ICHS). V České republice trpí dyslipidemií nejméně 81,0 % mužů a 70,6 % žen, prevalence dyslipidemie roste s věkem. Léčba dyslipidemie je ale jak v primární, tak sekundární prevenci stále nedostatečná a doporučených cílových hodnot LDL-cholesterolu je dosahováno jen u menšiny nemocných. Základní skupinou léků pro léčbu dyslipidemie jsou statiny, které je nutné užívat každodenně. Přerušení nebo ukončení léčby statiny je v klinické praxi časté. Ideální hypolipidemikum je účinné, s minimem vedlejších účinků a dlouhým dávkovacím intervalem. Inklisiran je modifikovaný oligonukleotid fungující na principu RNA-interference. Inhibuje translaci mRNA pro PCSK9, což vede k dlouhodobému poklesu hladiny LDL-cholesterolu. Efekt jediné podané dávky trvá až dva roky. Při podávání jedenkrát za šest měsíců vede terapie tímto lékem k poklesu hladiny LDL-cholesterolu o 50–55 %, u vybraných pacientů potom až o 65 %. Terapie inklisiranem není spojena se změnou počtu krevních destiček, lymfocytů, monocytů nebo neutrofilů, nevede ke změnám hladin prozánětlivých cytokinů a není spojena s indukcí tvorby protilátek proti tomuto léku. Nežádoucí reakce v místě vpichu tak zůstávají jediným relevantním vedlejším účinkem této léčby. Těmito vlastnostmi tak inklisiran splňuje nároky na ideální hypolipidemikum a získává potenciál stát se široce používaným lékem, který od základu změní přístup k léčbě dyslipidemie a povede k dalšímu snížení incidence ICHS.
Dyslipidemia is the most common metabolic disorder in the industrialized world and a major risk factor for the development of coronary artery disease (CAD). In the Czech Republic, at least 81.0% of men and 70.6% of women suffer from dyslipidemia, and the prevalence of dyslipidemia increases with age. However, the treatment of dyslipidaemia is still insufficient in both primary and secondary prevention and the recom- mended LDL-cholesterol target values are achieved in only a minority of patients. Statins are the main group of drugs used to treat dyslipidaemia and must be taken daily. Discontinuation or cessation of statin therapy is common in clinical practice. The ideal hypolipidemic is effective, with minimal side effects and a long dosing interval. Inclisiran is a modified oligonucleotide employing RNA interference. It inhibits the translation of mRNA for PCSK9 and thus leads to a long-term decrease in LDL- -cholesterol levels. The effect of a single dose lasts up to two years. When administered once every six months, treatment with this drug leads to a 50–55 % reduction in LDL-cholesterol, and up to 65 % in selected patients. Inclisiran therapy is not associated with changes in platelet, lymphocyte, monocyte or neutrophil counts, does not lead to changes in pro-inflammatory cytokine levels and is not associated with the induction of anti-drug antibodies. Adverse reactions at the injection site thus remain the only relevant side-effect of this treatment. With these properties, inclisiran meets the requirements of an ideal hypolipidemic drug. Therefore, it has the potential to become widely used and change fundamentally our approach to dyslipidemia treatment. Consequently, a major further reduction in CAD incidence can be expected. Key words inclisiran, dyslipidemia, LDL-
- Keywords
- inclisiran,
- MeSH
- Dyslipidemias * drug therapy MeSH
- Cardiovascular Diseases drug therapy prevention & control MeSH
- Clinical Studies as Topic MeSH
- Cholesterol, LDL analysis drug effects MeSH
- Humans MeSH
- RNA, Small Interfering * analysis administration & dosage pharmacology MeSH
- PCSK9 Inhibitors administration & dosage pharmacology adverse effects MeSH
- RNA Interference physiology drug effects MeSH
- Treatment Outcome MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH
Trypanosoma brucei, a protist responsible for human African trypanosomiasis (sleeping sickness), is transmitted by the tsetse fly where the procyclic forms of the parasite develop in the proline-rich (1-2 mM) and glucose-depleted digestive tract. Proline is essential for the midgut colonization of the parasite in the insect vector, however other carbon sources could be available and used to feed its central metabolism. Here we show that procyclic trypanosomes can consume and metabolize metabolic intermediates, including those excreted from glucose catabolism (succinate, alanine and pyruvate), with the exception of acetate, which is the ultimate end-product excreted by the parasite. Among the tested metabolites, tricarboxylic acid (TCA) cycle intermediates (succinate, malate and α-ketoglutarate) stimulated growth of the parasite in the presence of 2 mM proline. The pathways used for their metabolism were mapped by proton-NMR metabolic profiling and phenotypic analyses of thirteen RNAi and/or null mutants affecting central carbon metabolism. We showed that (i) malate is converted to succinate by both the reducing and oxidative branches of the TCA cycle, which demonstrates that procyclic trypanosomes can use the full TCA cycle, (ii) the enormous rate of α-ketoglutarate consumption (15-times higher than glucose) is possible thanks to the balanced production and consumption of NADH at the substrate level and (iii) α-ketoglutarate is toxic for trypanosomes if not appropriately metabolized as observed for an α-ketoglutarate dehydrogenase null mutant. In addition, epimastigotes produced from procyclics upon overexpression of RBP6 showed a growth defect in the presence of 2 mM proline, which is rescued by α-ketoglutarate, suggesting that physiological amounts of proline are not sufficient per se for the development of trypanosomes in the fly. In conclusion, these data show that trypanosomes can metabolize multiple metabolites, in addition to proline, which allows them to confront challenging environments in the fly.
- MeSH
- Citric Acid Cycle drug effects MeSH
- Glucose metabolism MeSH
- Insect Vectors parasitology MeSH
- Tsetse Flies drug effects parasitology MeSH
- Oxidation-Reduction drug effects MeSH
- Proline metabolism pharmacology MeSH
- RNA Interference physiology MeSH
- Trypanosoma brucei brucei drug effects metabolism MeSH
- Trypanosoma drug effects metabolism MeSH
- Trypanosomiasis, African drug therapy MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Here, we describe a protocol to prepare and administer glucan-encapsulated RNAi particles (GeRPs), for specific delivery of siRNA and subsequent gene silencing in Kupffer cells (KCs) in mice. This technology is based on baker's yeast and allows gene manipulation in macrophages in a tissue-specific manner depending on the route of administration and the model that is used. GeRP administered by intravenous injection in mice are delivered to KCs. Therefore, using the GeRP technology to silence genes provides a unique method to study the function of factors expressed by KCs in the regulation of liver function.
- MeSH
- Glucans genetics MeSH
- Liver physiology MeSH
- Kupffer Cells physiology MeSH
- Macrophages physiology MeSH
- RNA, Small Interfering genetics MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- RNA Interference physiology MeSH
- Gene Silencing physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
RNA interference (RNAi) has been widely applied for uncovering the biological functions of numerous genes, and has been envisaged as a pest control tool operating by disruption of essential gene expression. Although different methods, such as injection, feeding, and soaking, have been reported for successful delivery of double-stranded RNA (dsRNA), the efficiency of RNAi through oral delivery of dsRNA is highly variable among different insect groups. The German cockroach, Blattella germanica, is highly sensitive to the injection of dsRNA, as shown by many studies published previously. The present study describes a method to demonstrate that the dsRNA encapsulated with liposome carriers is sufficient to retard the degradation of dsRNA by midgut juice. Notably, the continuous feeding of dsRNA encapsulated by liposomes significantly reduces the tubulin expression in the midgut, and led to the death of cockroaches. In conclusion, the formulation and utilization of dsRNA lipoplexes, which protect dsRNA against nucleases, could be a practical use of RNAi for insect pest control in the future.
Adoptive cell therapy (ACT) is becoming a prominent alternative therapeutic treatment for cancer patients relapsing on traditional therapies. In parallel, antibodies targeting immune checkpoint molecules, such as cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4) and cell death protein 1 pathway (PD-1), are rapidly being approved for multiple cancer types, including as first line therapy for PD-L1-expressing non-small-cell lung cancer. The combination of ACT and checkpoint blockade could substantially boost the efficacy of ACT. In this study, we generated a novel self-delivering small interfering RNA (siRNA) (sdRNA) that knocked down PD-1 expression on healthy donor T cells as well as patient-derived tumor-infiltrating lymphocytes (TIL). We have developed an alternative chemical modification of RNA backbone for improved stability and increased efficacy. Our results show that T cells treated with sdRNA specific for PD-1 had increased interferon γ (IFN-γ) secreting capacity and that this modality of gene expression interference could be utilized in our rapid expansion protocol for production of TIL for therapy. TIL expanded in the presence of PD-1-specific sdRNA performed with increased functionality against autologous tumor as compared to control TIL. This method of introducing RNAi into T cells to modify the expression of proteins could easily be adopted into any ACT protocol and will lead to the exploration of new combination therapies.
- MeSH
- Programmed Cell Death 1 Receptor genetics metabolism MeSH
- Cell- and Tissue-Based Therapy methods MeSH
- HeLa Cells MeSH
- Immunotherapy, Adoptive methods MeSH
- Interferon-gamma genetics metabolism MeSH
- Humans MeSH
- Melanoma immunology metabolism therapy MeSH
- Lung Neoplasms immunology metabolism therapy MeSH
- Flow Cytometry MeSH
- RNA Interference physiology MeSH
- T-Lymphocytes metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- MeSH
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive genetics therapy MeSH
- Genetic Therapy methods trends MeSH
- Genome, Human genetics MeSH
- HIV Infections genetics therapy MeSH
- Disease Vectors MeSH
- Mosquito Vectors genetics MeSH
- Liposomes MeSH
- Drug Carriers MeSH
- RNA Interference physiology immunology MeSH
- Clustered Regularly Interspaced Short Palindromic Repeats * genetics MeSH
The silent information regulator 1 (Sirt1) has been shown to have negative effects on the Notch pathway in several contexts. We bring evidence that Sirt1 has a positive effect on Notch activation in Drosophila, in the context of sensory organ precursor specification and during wing development. The phenotype of Sirt1 mutant resembles weak Notch loss-of-function phenotypes, and genetic interactions of Sirt1 with the components of the Notch pathway also suggest a positive role for Sirt1 in Notch signalling. Sirt1 is necessary for the efficient activation of enhancer of split [E(spl)] genes by Notch in S2N cells. Additionally, the Notch-dependent response of several E(spl) genes is sensitive to metabolic stress caused by 2-deoxy-d-glucose treatment, in a Sirt1-dependent manner. We found Sirt1 associated with several proteins involved in Notch repression as well as activation, including the cofactor exchange factor Ebi (TBL1), the RLAF/LAF histone chaperone complex and the Tip60 acetylation complex. Moreover, Sirt1 participates in the deacetylation of the CSL transcription factor Suppressor of Hairless. The role of Sirt1 in Notch signalling is, therefore, more complex than previously recognized, and its diverse effects may be explained by a plethora of Sirt1 substrates involved in the regulation of Notch signalling.
- MeSH
- Cell Line MeSH
- Deoxyglucose pharmacology MeSH
- Drosophila MeSH
- Mass Spectrometry MeSH
- Immunoprecipitation MeSH
- RNA, Messenger antagonists & inhibitors MeSH
- Drosophila Proteins genetics metabolism MeSH
- Receptors, Notch genetics metabolism MeSH
- Repressor Proteins genetics metabolism MeSH
- RNA Interference physiology MeSH
- Signal Transduction drug effects genetics MeSH
- Sirtuin 1 genetics metabolism MeSH
- Basic Helix-Loop-Helix Transcription Factors genetics metabolism MeSH
- Protein Binding MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH