-
Je něco špatně v tomto záznamu ?
GC and Repeats Profiling along Chromosomes-The Future of Fish Compositional Cytogenomics
D. Matoulek, V. Borůvková, K. Ocalewicz, R. Symonová
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2010
Free Medical Journals
od 2010
PubMed Central
od 2010
Europe PubMed Central
od 2010
ProQuest Central
od 2010-03-01
Open Access Digital Library
od 2010-01-01
Open Access Digital Library
od 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2010
PubMed
33396302
DOI
10.3390/genes12010050
Knihovny.cz E-zdroje
- MeSH
- genom * MeSH
- Gorilla gorilla klasifikace genetika MeSH
- karyotypizace metody MeSH
- kočky MeSH
- mapování chromozomů metody statistika a číselné údaje MeSH
- pruhování chromozomů MeSH
- ryby klasifikace genetika MeSH
- software * MeSH
- tandemové repetitivní sekvence MeSH
- zastoupení bazí * MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The study of fish cytogenetics has been impeded by the inability to produce G-bands that could assign chromosomes to their homologous pairs. Thus, the majority of karyotypes published have been estimated based on morphological similarities of chromosomes. The reason why chromosome G-banding does not work in fish remains elusive. However, the recent increase in the number of fish genomes assembled to the chromosome level provides a way to analyse this issue. We have developed a Python tool to visualize and quantify GC percentage (GC%) of both repeats and unique DNA along chromosomes using a non-overlapping sliding window approach. Our tool profiles GC% and simultaneously plots the proportion of repeats (rep%) in a color scale (or vice versa). Hence, it is possible to assess the contribution of repeats to the total GC%. The main differences are the GC% of repeats homogenizing the overall GC% along fish chromosomes and a greater range of GC% scattered along fish chromosomes. This may explain the inability to produce G-banding in fish. We also show an occasional banding pattern along the chromosomes in some fish that probably cannot be detected with traditional qualitative cytogenetic methods.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21026319
- 003
- CZ-PrNML
- 005
- 20211026133008.0
- 007
- ta
- 008
- 211013s2020 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/genes12010050 $2 doi
- 035 __
- $a (PubMed)33396302
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Matoulek, Dominik $u Faculty of Science, University of Hradec Kralove, 500 03 Hradec Králové, Czech Republic
- 245 10
- $a GC and Repeats Profiling along Chromosomes-The Future of Fish Compositional Cytogenomics / $c D. Matoulek, V. Borůvková, K. Ocalewicz, R. Symonová
- 520 9_
- $a The study of fish cytogenetics has been impeded by the inability to produce G-bands that could assign chromosomes to their homologous pairs. Thus, the majority of karyotypes published have been estimated based on morphological similarities of chromosomes. The reason why chromosome G-banding does not work in fish remains elusive. However, the recent increase in the number of fish genomes assembled to the chromosome level provides a way to analyse this issue. We have developed a Python tool to visualize and quantify GC percentage (GC%) of both repeats and unique DNA along chromosomes using a non-overlapping sliding window approach. Our tool profiles GC% and simultaneously plots the proportion of repeats (rep%) in a color scale (or vice versa). Hence, it is possible to assess the contribution of repeats to the total GC%. The main differences are the GC% of repeats homogenizing the overall GC% along fish chromosomes and a greater range of GC% scattered along fish chromosomes. This may explain the inability to produce G-banding in fish. We also show an occasional banding pattern along the chromosomes in some fish that probably cannot be detected with traditional qualitative cytogenetic methods.
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a zastoupení bazí $7 D001482
- 650 _2
- $a kočky $7 D002415
- 650 _2
- $a pruhování chromozomů $7 D002871
- 650 _2
- $a mapování chromozomů $x metody $x statistika a číselné údaje $7 D002874
- 650 _2
- $a ryby $x klasifikace $x genetika $7 D005399
- 650 12
- $a genom $7 D016678
- 650 _2
- $a Gorilla gorilla $x klasifikace $x genetika $7 D006071
- 650 _2
- $a karyotypizace $x metody $7 D007621
- 650 12
- $a software $7 D012984
- 650 _2
- $a tandemové repetitivní sekvence $7 D020080
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Borůvková, Veronika $u Faculty of Science, University of Hradec Kralove, 500 03 Hradec Králové, Czech Republic
- 700 1_
- $a Ocalewicz, Konrad $u Department of Marine Biology and Ecology, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, 80-309 Gdansk, Poland
- 700 1_
- $a Symonová, Radka $u Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, 80333 Freising, Germany
- 773 0_
- $w MED00174652 $t Genes $x 2073-4425 $g Roč. 12, č. 1 (2020)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33396302 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026133015 $b ABA008
- 999 __
- $a ok $b bmc $g 1715135 $s 1146826
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 12 $c 1 $e 20201231 $i 2073-4425 $m Genes $n Genes $x MED00174652
- LZP __
- $a Pubmed-20211013