-
Something wrong with this record ?
GC and Repeats Profiling along Chromosomes-The Future of Fish Compositional Cytogenomics
D. Matoulek, V. Borůvková, K. Ocalewicz, R. Symonová
Language English Country Switzerland
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 2010
PubMed Central
from 2010
Europe PubMed Central
from 2010
ProQuest Central
from 2010-03-01
Open Access Digital Library
from 2010-01-01
Open Access Digital Library
from 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2010
PubMed
33396302
DOI
10.3390/genes12010050
Knihovny.cz E-resources
- MeSH
- Genome * MeSH
- Gorilla gorilla classification genetics MeSH
- Karyotyping methods MeSH
- Cats MeSH
- Chromosome Mapping methods statistics & numerical data MeSH
- Chromosome Banding MeSH
- Fishes classification genetics MeSH
- Software * MeSH
- Tandem Repeat Sequences MeSH
- Base Composition * MeSH
- Animals MeSH
- Check Tag
- Cats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The study of fish cytogenetics has been impeded by the inability to produce G-bands that could assign chromosomes to their homologous pairs. Thus, the majority of karyotypes published have been estimated based on morphological similarities of chromosomes. The reason why chromosome G-banding does not work in fish remains elusive. However, the recent increase in the number of fish genomes assembled to the chromosome level provides a way to analyse this issue. We have developed a Python tool to visualize and quantify GC percentage (GC%) of both repeats and unique DNA along chromosomes using a non-overlapping sliding window approach. Our tool profiles GC% and simultaneously plots the proportion of repeats (rep%) in a color scale (or vice versa). Hence, it is possible to assess the contribution of repeats to the total GC%. The main differences are the GC% of repeats homogenizing the overall GC% along fish chromosomes and a greater range of GC% scattered along fish chromosomes. This may explain the inability to produce G-banding in fish. We also show an occasional banding pattern along the chromosomes in some fish that probably cannot be detected with traditional qualitative cytogenetic methods.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21026319
- 003
- CZ-PrNML
- 005
- 20211026133008.0
- 007
- ta
- 008
- 211013s2020 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/genes12010050 $2 doi
- 035 __
- $a (PubMed)33396302
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Matoulek, Dominik $u Faculty of Science, University of Hradec Kralove, 500 03 Hradec Králové, Czech Republic
- 245 10
- $a GC and Repeats Profiling along Chromosomes-The Future of Fish Compositional Cytogenomics / $c D. Matoulek, V. Borůvková, K. Ocalewicz, R. Symonová
- 520 9_
- $a The study of fish cytogenetics has been impeded by the inability to produce G-bands that could assign chromosomes to their homologous pairs. Thus, the majority of karyotypes published have been estimated based on morphological similarities of chromosomes. The reason why chromosome G-banding does not work in fish remains elusive. However, the recent increase in the number of fish genomes assembled to the chromosome level provides a way to analyse this issue. We have developed a Python tool to visualize and quantify GC percentage (GC%) of both repeats and unique DNA along chromosomes using a non-overlapping sliding window approach. Our tool profiles GC% and simultaneously plots the proportion of repeats (rep%) in a color scale (or vice versa). Hence, it is possible to assess the contribution of repeats to the total GC%. The main differences are the GC% of repeats homogenizing the overall GC% along fish chromosomes and a greater range of GC% scattered along fish chromosomes. This may explain the inability to produce G-banding in fish. We also show an occasional banding pattern along the chromosomes in some fish that probably cannot be detected with traditional qualitative cytogenetic methods.
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a zastoupení bazí $7 D001482
- 650 _2
- $a kočky $7 D002415
- 650 _2
- $a pruhování chromozomů $7 D002871
- 650 _2
- $a mapování chromozomů $x metody $x statistika a číselné údaje $7 D002874
- 650 _2
- $a ryby $x klasifikace $x genetika $7 D005399
- 650 12
- $a genom $7 D016678
- 650 _2
- $a Gorilla gorilla $x klasifikace $x genetika $7 D006071
- 650 _2
- $a karyotypizace $x metody $7 D007621
- 650 12
- $a software $7 D012984
- 650 _2
- $a tandemové repetitivní sekvence $7 D020080
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Borůvková, Veronika $u Faculty of Science, University of Hradec Kralove, 500 03 Hradec Králové, Czech Republic
- 700 1_
- $a Ocalewicz, Konrad $u Department of Marine Biology and Ecology, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, 80-309 Gdansk, Poland
- 700 1_
- $a Symonová, Radka $u Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, 80333 Freising, Germany
- 773 0_
- $w MED00174652 $t Genes $x 2073-4425 $g Roč. 12, č. 1 (2020)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33396302 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026133015 $b ABA008
- 999 __
- $a ok $b bmc $g 1715135 $s 1146826
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 12 $c 1 $e 20201231 $i 2073-4425 $m Genes $n Genes $x MED00174652
- LZP __
- $a Pubmed-20211013