• Something wrong with this record ?

QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach

DV. Zankov, M. Matveieva, AV. Nikonenko, RI. Nugmanov, II. Baskin, A. Varnek, P. Polishchuk, TI. Madzhidov

. 2021 ; 61 (10) : 4913-4923. [pub] 20210923

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Modern QSAR approaches have wide practical applications in drug discovery for designing potentially bioactive molecules. If such models are based on the use of 2D descriptors, important information contained in the spatial structures of molecules is lost. The major problem in constructing models using 3D descriptors is the choice of a putative bioactive conformation, which affects the predictive performance. The multi-instance (MI) learning approach considering multiple conformations in model training could be a reasonable solution to the above problem. In this study, we implemented several multi-instance algorithms, both conventional and based on deep learning, and investigated their performance. We compared the performance of MI-QSAR models with those based on the classical single-instance QSAR (SI-QSAR) approach in which each molecule is encoded by either 2D descriptors computed for the corresponding molecular graph or 3D descriptors issued for a single lowest energy conformation. The calculations were carried out on 175 data sets extracted from the ChEMBL23 database. It is demonstrated that (i) MI-QSAR outperforms SI-QSAR in numerous cases and (ii) MI algorithms can automatically identify plausible bioactive conformations.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003424
003      
CZ-PrNML
005      
20220127150240.0
007      
ta
008      
220113s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/acs.jcim.1c00692 $2 doi
035    __
$a (PubMed)34554736
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Zankov, Dmitry V $u Laboratory of Chemoinformatics and Molecular Modeling, A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya 29, 420111 Kazan, Russia $u Laboratory of Chemoinformatics, Institute Le Bel, University of Strasbourg, B. Pascal 4, 67081 Strasbourg, France
245    10
$a QSAR Modeling Based on Conformation Ensembles Using a Multi-Instance Learning Approach / $c DV. Zankov, M. Matveieva, AV. Nikonenko, RI. Nugmanov, II. Baskin, A. Varnek, P. Polishchuk, TI. Madzhidov
520    9_
$a Modern QSAR approaches have wide practical applications in drug discovery for designing potentially bioactive molecules. If such models are based on the use of 2D descriptors, important information contained in the spatial structures of molecules is lost. The major problem in constructing models using 3D descriptors is the choice of a putative bioactive conformation, which affects the predictive performance. The multi-instance (MI) learning approach considering multiple conformations in model training could be a reasonable solution to the above problem. In this study, we implemented several multi-instance algorithms, both conventional and based on deep learning, and investigated their performance. We compared the performance of MI-QSAR models with those based on the classical single-instance QSAR (SI-QSAR) approach in which each molecule is encoded by either 2D descriptors computed for the corresponding molecular graph or 3D descriptors issued for a single lowest energy conformation. The calculations were carried out on 175 data sets extracted from the ChEMBL23 database. It is demonstrated that (i) MI-QSAR outperforms SI-QSAR in numerous cases and (ii) MI algorithms can automatically identify plausible bioactive conformations.
650    12
$a algoritmy $7 D000465
650    _2
$a databáze faktografické $7 D016208
650    _2
$a objevování léků $7 D055808
650    _2
$a molekulární konformace $7 D008968
650    12
$a kvantitativní vztahy mezi strukturou a aktivitou $7 D021281
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Matveieva, Mariia $u Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Hnevotinska 5, 77900 Olomouc, Czech Republic
700    1_
$a Nikonenko, Aleksandra V $u Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Hnevotinska 5, 77900 Olomouc, Czech Republic
700    1_
$a Nugmanov, Ramil I $u Laboratory of Chemoinformatics and Molecular Modeling, A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya 29, 420111 Kazan, Russia
700    1_
$a Baskin, Igor I $u Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
700    1_
$a Varnek, Alexandre $u Laboratory of Chemoinformatics, Institute Le Bel, University of Strasbourg, B. Pascal 4, 67081 Strasbourg, France
700    1_
$a Polishchuk, Pavel $u Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Hnevotinska 5, 77900 Olomouc, Czech Republic
700    1_
$a Madzhidov, Timur I $u Laboratory of Chemoinformatics and Molecular Modeling, A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya 29, 420111 Kazan, Russia
773    0_
$w MED00008945 $t Journal of chemical information and modeling $x 1549-960X $g Roč. 61, č. 10 (2021), s. 4913-4923
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34554736 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127150236 $b ABA008
999    __
$a ok $b bmc $g 1751013 $s 1154573
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 61 $c 10 $d 4913-4923 $e 20210923 $i 1549-960X $m Journal of chemical information and modeling $n J Chem Inf Model $x MED00008945
LZP    __
$a Pubmed-20220113

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...