Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Identification of pollen taxa by different microscopy techniques

M. Pospiech, Z. Javůrková, P. Hrabec, P. Štarha, S. Ljasovská, J. Bednář, B. Tremlová

. 2021 ; 16 (9) : e0256808. [pub] 20210901

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22003858

Melissopalynology is an important analytical method to identify botanical origin of honey. Pollen grain recognition is commonly performed by visual inspection by a trained person. An alternative method for visual inspection is automated pollen analysis based on the image analysis technique. Image analysis transfers visual information to mathematical descriptions. In this work, the suitability of three microscopic techniques for automatic analysis of pollen grains was studied. 2D and 3D morphological characteristics, textural and colour features, and extended depth of focus characteristics were used for the pollen discrimination. In this study, 7 botanical taxa and a total of 2482 pollen grains were evaluated. The highest correct classification rate of 93.05% was achieved using the phase contrast microscopy, followed by the dark field microscopy reaching 91.02%, and finally by the light field microscopy reaching 88.88%. The most significant discriminant characteristics were morphological (2D and 3D) and colour characteristics. Our results confirm the potential of using automatic pollen analysis to discriminate pollen taxa in honey. This work provides the basis for further research where the taxa dataset will be increased, and new descriptors will be studied.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003858
003      
CZ-PrNML
005      
20220127145803.0
007      
ta
008      
220113s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0256808 $2 doi
035    __
$a (PubMed)34469471
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Pospiech, Matej $u Faculty of Veterinary Hygiene and Ecology, Department of Plant Origin Food Sciences, University of Veterinary Sciences Brno, Brno, Czech Republic
245    10
$a Identification of pollen taxa by different microscopy techniques / $c M. Pospiech, Z. Javůrková, P. Hrabec, P. Štarha, S. Ljasovská, J. Bednář, B. Tremlová
520    9_
$a Melissopalynology is an important analytical method to identify botanical origin of honey. Pollen grain recognition is commonly performed by visual inspection by a trained person. An alternative method for visual inspection is automated pollen analysis based on the image analysis technique. Image analysis transfers visual information to mathematical descriptions. In this work, the suitability of three microscopic techniques for automatic analysis of pollen grains was studied. 2D and 3D morphological characteristics, textural and colour features, and extended depth of focus characteristics were used for the pollen discrimination. In this study, 7 botanical taxa and a total of 2482 pollen grains were evaluated. The highest correct classification rate of 93.05% was achieved using the phase contrast microscopy, followed by the dark field microscopy reaching 91.02%, and finally by the light field microscopy reaching 88.88%. The most significant discriminant characteristics were morphological (2D and 3D) and colour characteristics. Our results confirm the potential of using automatic pollen analysis to discriminate pollen taxa in honey. This work provides the basis for further research where the taxa dataset will be increased, and new descriptors will be studied.
650    12
$a včelařství $7 D056630
650    _2
$a barva $7 D003116
650    _2
$a med $x analýza $7 D006722
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a mikroskopie $x metody $7 D008853
650    _2
$a pyl $x klasifikace $7 D011058
651    _2
$a Česká republika $7 D018153
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Javůrková, Zdeňka $u Faculty of Veterinary Hygiene and Ecology, Department of Plant Origin Food Sciences, University of Veterinary Sciences Brno, Brno, Czech Republic
700    1_
$a Hrabec, Pavel $u Faculty of Mechanical Engineering, Department of Statistics and Optimization, Brno University of Technology, Brno, Czech Republic
700    1_
$a Štarha, Pavel $u Faculty of Mechanical Engineering, Department of Computer Graphics and Geometry, Brno University of Technology, Brno, Czech Republic
700    1_
$a Ljasovská, Simona $u Faculty of Veterinary Hygiene and Ecology, Department of Plant Origin Food Sciences, University of Veterinary Sciences Brno, Brno, Czech Republic
700    1_
$a Bednář, Josef $u Faculty of Mechanical Engineering, Department of Statistics and Optimization, Brno University of Technology, Brno, Czech Republic
700    1_
$a Tremlová, Bohuslava $u Faculty of Veterinary Hygiene and Ecology, Department of Plant Origin Food Sciences, University of Veterinary Sciences Brno, Brno, Czech Republic
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 16, č. 9 (2021), s. e0256808
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34469471 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127145759 $b ABA008
999    __
$a ok $b bmc $g 1751353 $s 1155007
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 16 $c 9 $d e0256808 $e 20210901 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...