-
Je něco špatně v tomto záznamu ?
Identification of pollen taxa by different microscopy techniques
M. Pospiech, Z. Javůrková, P. Hrabec, P. Štarha, S. Ljasovská, J. Bednář, B. Tremlová
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
Public Library of Science (PLoS)
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2006-12-01
Open Access Digital Library
od 2006-10-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-01-01
Medline Complete (EBSCOhost)
od 2008-01-01
Nursing & Allied Health Database (ProQuest)
od 2006-12-01
Health & Medicine (ProQuest)
od 2006-12-01
Public Health Database (ProQuest)
od 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
- MeSH
- barva MeSH
- med analýza MeSH
- mikroskopie metody MeSH
- počítačové zpracování obrazu metody MeSH
- pyl klasifikace MeSH
- včelařství * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Melissopalynology is an important analytical method to identify botanical origin of honey. Pollen grain recognition is commonly performed by visual inspection by a trained person. An alternative method for visual inspection is automated pollen analysis based on the image analysis technique. Image analysis transfers visual information to mathematical descriptions. In this work, the suitability of three microscopic techniques for automatic analysis of pollen grains was studied. 2D and 3D morphological characteristics, textural and colour features, and extended depth of focus characteristics were used for the pollen discrimination. In this study, 7 botanical taxa and a total of 2482 pollen grains were evaluated. The highest correct classification rate of 93.05% was achieved using the phase contrast microscopy, followed by the dark field microscopy reaching 91.02%, and finally by the light field microscopy reaching 88.88%. The most significant discriminant characteristics were morphological (2D and 3D) and colour characteristics. Our results confirm the potential of using automatic pollen analysis to discriminate pollen taxa in honey. This work provides the basis for further research where the taxa dataset will be increased, and new descriptors will be studied.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22003858
- 003
- CZ-PrNML
- 005
- 20220127145803.0
- 007
- ta
- 008
- 220113s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0256808 $2 doi
- 035 __
- $a (PubMed)34469471
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Pospiech, Matej $u Faculty of Veterinary Hygiene and Ecology, Department of Plant Origin Food Sciences, University of Veterinary Sciences Brno, Brno, Czech Republic
- 245 10
- $a Identification of pollen taxa by different microscopy techniques / $c M. Pospiech, Z. Javůrková, P. Hrabec, P. Štarha, S. Ljasovská, J. Bednář, B. Tremlová
- 520 9_
- $a Melissopalynology is an important analytical method to identify botanical origin of honey. Pollen grain recognition is commonly performed by visual inspection by a trained person. An alternative method for visual inspection is automated pollen analysis based on the image analysis technique. Image analysis transfers visual information to mathematical descriptions. In this work, the suitability of three microscopic techniques for automatic analysis of pollen grains was studied. 2D and 3D morphological characteristics, textural and colour features, and extended depth of focus characteristics were used for the pollen discrimination. In this study, 7 botanical taxa and a total of 2482 pollen grains were evaluated. The highest correct classification rate of 93.05% was achieved using the phase contrast microscopy, followed by the dark field microscopy reaching 91.02%, and finally by the light field microscopy reaching 88.88%. The most significant discriminant characteristics were morphological (2D and 3D) and colour characteristics. Our results confirm the potential of using automatic pollen analysis to discriminate pollen taxa in honey. This work provides the basis for further research where the taxa dataset will be increased, and new descriptors will be studied.
- 650 12
- $a včelařství $7 D056630
- 650 _2
- $a barva $7 D003116
- 650 _2
- $a med $x analýza $7 D006722
- 650 _2
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 _2
- $a mikroskopie $x metody $7 D008853
- 650 _2
- $a pyl $x klasifikace $7 D011058
- 651 _2
- $a Česká republika $7 D018153
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Javůrková, Zdeňka $u Faculty of Veterinary Hygiene and Ecology, Department of Plant Origin Food Sciences, University of Veterinary Sciences Brno, Brno, Czech Republic
- 700 1_
- $a Hrabec, Pavel $u Faculty of Mechanical Engineering, Department of Statistics and Optimization, Brno University of Technology, Brno, Czech Republic
- 700 1_
- $a Štarha, Pavel $u Faculty of Mechanical Engineering, Department of Computer Graphics and Geometry, Brno University of Technology, Brno, Czech Republic
- 700 1_
- $a Ljasovská, Simona $u Faculty of Veterinary Hygiene and Ecology, Department of Plant Origin Food Sciences, University of Veterinary Sciences Brno, Brno, Czech Republic
- 700 1_
- $a Bednář, Josef $u Faculty of Mechanical Engineering, Department of Statistics and Optimization, Brno University of Technology, Brno, Czech Republic
- 700 1_
- $a Tremlová, Bohuslava $u Faculty of Veterinary Hygiene and Ecology, Department of Plant Origin Food Sciences, University of Veterinary Sciences Brno, Brno, Czech Republic
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 16, č. 9 (2021), s. e0256808
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34469471 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127145759 $b ABA008
- 999 __
- $a ok $b bmc $g 1751353 $s 1155007
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 16 $c 9 $d e0256808 $e 20210901 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20220113