-
Something wrong with this record ?
Evolution of Brain Volume Loss Rates in Early Stages of Multiple Sclerosis
T. Uher, J. Krasensky, C. Malpas, N. Bergsland, MG. Dwyer, E. Kubala Havrdova, M. Vaneckova, D. Horakova, R. Zivadinov, T. Kalincik
Language English Country United States
Document type Clinical Trial, Journal Article, Observational Study, Randomized Controlled Trial, Research Support, Non-U.S. Gov't
Grant support
UL1 TR001412
NCATS NIH HHS - United States
NLK
Directory of Open Access Journals
from 2014
Free Medical Journals
from 2014
Freely Accessible Science Journals
from 2014
PubMed Central
from 2014
Open Access Digital Library
from 2014-01-01
Open Access Digital Library
from 2014-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2014
- MeSH
- Atrophy pathology MeSH
- Adult MeSH
- Cohort Studies MeSH
- Middle Aged MeSH
- Humans MeSH
- Longitudinal Studies MeSH
- Magnetic Resonance Imaging MeSH
- Brain pathology MeSH
- Disease Progression MeSH
- Prospective Studies MeSH
- Multiple Sclerosis pathology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial MeSH
- Observational Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Randomized Controlled Trial MeSH
OBJECTIVE: To describe the dynamics of brain volume loss (BVL) at different stages of relapsing-remitting multiple sclerosis (RRMS), to describe the association between BVL and clinical measures, and to investigate an effect of treatment escalation on the rate of BVL. METHODS: Together, 1903 patients predominantly with RRMS from the Avonex-Steroids-Azathioprine cohort (N = 166), the study of early IFN-β1a treatment cohort (N = 180), and the quantitative MRI cohort (N = 1,557) with ≥2 MRI scans and ≥1-year of follow-up were included. Brain MRI scans (N = 7,203) were performed using a single 1.5-T machine. Relationships between age or disease duration and global and tissue-specific BVL rates were analyzed using mixed models. RESULTS: Age was not associated with the rate of BVL (β = -0.003; Cohen f2 = 0.0005; adjusted p = 0.39). Although disease duration was associated with the rate of BVL, its effect on the BVL rate was minimal (β = -0.012; Cohen f2 = 0.004; adjusted p = 4 × 10-5). Analysis of association between tissue-specific brain volume changes and age (β = -0.019 to -0.011; adjusted p = 0.028-1.00) or disease duration (β = -0.028 to -0.008; adjusted p = 0.16-0.96) confirmed these results. Although increase in the relapse rate (β = 0.10; adjusted p = 9 × 10-9), Expanded Disability Status Scale (EDSS; β = 0.17; adjusted p = 8 × 10-5), and EDSS change (β = 0.15; adjusted p = 2 × 10-5) were associated with accelerated rate of BVL, their effect on the rate of BVL was minimal (all Cohen f2 ≤ 0.007). In 94 patients who escalated therapy, the rate of BVL decreased following treatment escalation by 0.29% (β = -0.29; Cohen f2 = 0.133; p = 5.5 × 10-8). CONCLUSIONS: The rate of BVL is relatively stable throughout the course of RRMS. The accelerated BVL is weakly associated with concurrent higher disease activity, and timely escalation to high-efficacy immunotherapy helps decrease the rate of BVL.
From the CORe Department of Medicine the University of Melbourne VIC Australia
IRCCS Fondazione Don Carlo Gnocchi Milan Italy
Melbourne MS Centre Department of Neurology the Royal Melbourne Hospital VIC Australia
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22004530
- 003
- CZ-PrNML
- 005
- 20220127145154.0
- 007
- ta
- 008
- 220113s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1212/NXI.0000000000000979 $2 doi
- 035 __
- $a (PubMed)33727311
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Uher, Tomas $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia. tomas.uher@vfn.cz
- 245 10
- $a Evolution of Brain Volume Loss Rates in Early Stages of Multiple Sclerosis / $c T. Uher, J. Krasensky, C. Malpas, N. Bergsland, MG. Dwyer, E. Kubala Havrdova, M. Vaneckova, D. Horakova, R. Zivadinov, T. Kalincik
- 520 9_
- $a OBJECTIVE: To describe the dynamics of brain volume loss (BVL) at different stages of relapsing-remitting multiple sclerosis (RRMS), to describe the association between BVL and clinical measures, and to investigate an effect of treatment escalation on the rate of BVL. METHODS: Together, 1903 patients predominantly with RRMS from the Avonex-Steroids-Azathioprine cohort (N = 166), the study of early IFN-β1a treatment cohort (N = 180), and the quantitative MRI cohort (N = 1,557) with ≥2 MRI scans and ≥1-year of follow-up were included. Brain MRI scans (N = 7,203) were performed using a single 1.5-T machine. Relationships between age or disease duration and global and tissue-specific BVL rates were analyzed using mixed models. RESULTS: Age was not associated with the rate of BVL (β = -0.003; Cohen f2 = 0.0005; adjusted p = 0.39). Although disease duration was associated with the rate of BVL, its effect on the BVL rate was minimal (β = -0.012; Cohen f2 = 0.004; adjusted p = 4 × 10-5). Analysis of association between tissue-specific brain volume changes and age (β = -0.019 to -0.011; adjusted p = 0.028-1.00) or disease duration (β = -0.028 to -0.008; adjusted p = 0.16-0.96) confirmed these results. Although increase in the relapse rate (β = 0.10; adjusted p = 9 × 10-9), Expanded Disability Status Scale (EDSS; β = 0.17; adjusted p = 8 × 10-5), and EDSS change (β = 0.15; adjusted p = 2 × 10-5) were associated with accelerated rate of BVL, their effect on the rate of BVL was minimal (all Cohen f2 ≤ 0.007). In 94 patients who escalated therapy, the rate of BVL decreased following treatment escalation by 0.29% (β = -0.29; Cohen f2 = 0.133; p = 5.5 × 10-8). CONCLUSIONS: The rate of BVL is relatively stable throughout the course of RRMS. The accelerated BVL is weakly associated with concurrent higher disease activity, and timely escalation to high-efficacy immunotherapy helps decrease the rate of BVL.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a atrofie $x patologie $7 D001284
- 650 _2
- $a mozek $x patologie $7 D001921
- 650 _2
- $a kohortové studie $7 D015331
- 650 _2
- $a progrese nemoci $7 D018450
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a longitudinální studie $7 D008137
- 650 _2
- $a magnetická rezonanční tomografie $7 D008279
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a roztroušená skleróza $x patologie $7 D009103
- 650 _2
- $a prospektivní studie $7 D011446
- 655 _2
- $a klinické zkoušky $7 D016430
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a pozorovací studie $7 D064888
- 655 _2
- $a randomizované kontrolované studie $7 D016449
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Krasensky, Jan $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
- 700 1_
- $a Malpas, Charles $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
- 700 1_
- $a Bergsland, Niels $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
- 700 1_
- $a Dwyer, Michael G $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
- 700 1_
- $a Kubala Havrdova, Eva $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
- 700 1_
- $a Vaneckova, Manuela $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
- 700 1_
- $a Horakova, Dana $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
- 700 1_
- $a Zivadinov, Robert $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
- 700 1_
- $a Kalincik, Tomas $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
- 773 0_
- $w MED00186373 $t Neurology(R) neuroimmunology & neuroinflammation $x 2332-7812 $g Roč. 8, č. 3 (2021)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33727311 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127145151 $b ABA008
- 999 __
- $a ok $b bmc $g 1751860 $s 1155679
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 8 $c 3 $e 20210316 $i 2332-7812 $m Neurology® neuroimmunology & neuroinflammation $n Neurol Neuroimmunol Neuroinflamm $x MED00186373
- GRA __
- $a UL1 TR001412 $p NCATS NIH HHS $2 United States
- LZP __
- $a Pubmed-20220113