Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Evolution of Brain Volume Loss Rates in Early Stages of Multiple Sclerosis

T. Uher, J. Krasensky, C. Malpas, N. Bergsland, MG. Dwyer, E. Kubala Havrdova, M. Vaneckova, D. Horakova, R. Zivadinov, T. Kalincik

. 2021 ; 8 (3) : . [pub] 20210316

Language English Country United States

Document type Clinical Trial, Journal Article, Observational Study, Randomized Controlled Trial, Research Support, Non-U.S. Gov't

Grant support
UL1 TR001412 NCATS NIH HHS - United States

OBJECTIVE: To describe the dynamics of brain volume loss (BVL) at different stages of relapsing-remitting multiple sclerosis (RRMS), to describe the association between BVL and clinical measures, and to investigate an effect of treatment escalation on the rate of BVL. METHODS: Together, 1903 patients predominantly with RRMS from the Avonex-Steroids-Azathioprine cohort (N = 166), the study of early IFN-β1a treatment cohort (N = 180), and the quantitative MRI cohort (N = 1,557) with ≥2 MRI scans and ≥1-year of follow-up were included. Brain MRI scans (N = 7,203) were performed using a single 1.5-T machine. Relationships between age or disease duration and global and tissue-specific BVL rates were analyzed using mixed models. RESULTS: Age was not associated with the rate of BVL (β = -0.003; Cohen f2 = 0.0005; adjusted p = 0.39). Although disease duration was associated with the rate of BVL, its effect on the BVL rate was minimal (β = -0.012; Cohen f2 = 0.004; adjusted p = 4 × 10-5). Analysis of association between tissue-specific brain volume changes and age (β = -0.019 to -0.011; adjusted p = 0.028-1.00) or disease duration (β = -0.028 to -0.008; adjusted p = 0.16-0.96) confirmed these results. Although increase in the relapse rate (β = 0.10; adjusted p = 9 × 10-9), Expanded Disability Status Scale (EDSS; β = 0.17; adjusted p = 8 × 10-5), and EDSS change (β = 0.15; adjusted p = 2 × 10-5) were associated with accelerated rate of BVL, their effect on the rate of BVL was minimal (all Cohen f2 ≤ 0.007). In 94 patients who escalated therapy, the rate of BVL decreased following treatment escalation by 0.29% (β = -0.29; Cohen f2 = 0.133; p = 5.5 × 10-8). CONCLUSIONS: The rate of BVL is relatively stable throughout the course of RRMS. The accelerated BVL is weakly associated with concurrent higher disease activity, and timely escalation to high-efficacy immunotherapy helps decrease the rate of BVL.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22004530
003      
CZ-PrNML
005      
20220127145154.0
007      
ta
008      
220113s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1212/NXI.0000000000000979 $2 doi
035    __
$a (PubMed)33727311
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Uher, Tomas $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia. tomas.uher@vfn.cz
245    10
$a Evolution of Brain Volume Loss Rates in Early Stages of Multiple Sclerosis / $c T. Uher, J. Krasensky, C. Malpas, N. Bergsland, MG. Dwyer, E. Kubala Havrdova, M. Vaneckova, D. Horakova, R. Zivadinov, T. Kalincik
520    9_
$a OBJECTIVE: To describe the dynamics of brain volume loss (BVL) at different stages of relapsing-remitting multiple sclerosis (RRMS), to describe the association between BVL and clinical measures, and to investigate an effect of treatment escalation on the rate of BVL. METHODS: Together, 1903 patients predominantly with RRMS from the Avonex-Steroids-Azathioprine cohort (N = 166), the study of early IFN-β1a treatment cohort (N = 180), and the quantitative MRI cohort (N = 1,557) with ≥2 MRI scans and ≥1-year of follow-up were included. Brain MRI scans (N = 7,203) were performed using a single 1.5-T machine. Relationships between age or disease duration and global and tissue-specific BVL rates were analyzed using mixed models. RESULTS: Age was not associated with the rate of BVL (β = -0.003; Cohen f2 = 0.0005; adjusted p = 0.39). Although disease duration was associated with the rate of BVL, its effect on the BVL rate was minimal (β = -0.012; Cohen f2 = 0.004; adjusted p = 4 × 10-5). Analysis of association between tissue-specific brain volume changes and age (β = -0.019 to -0.011; adjusted p = 0.028-1.00) or disease duration (β = -0.028 to -0.008; adjusted p = 0.16-0.96) confirmed these results. Although increase in the relapse rate (β = 0.10; adjusted p = 9 × 10-9), Expanded Disability Status Scale (EDSS; β = 0.17; adjusted p = 8 × 10-5), and EDSS change (β = 0.15; adjusted p = 2 × 10-5) were associated with accelerated rate of BVL, their effect on the rate of BVL was minimal (all Cohen f2 ≤ 0.007). In 94 patients who escalated therapy, the rate of BVL decreased following treatment escalation by 0.29% (β = -0.29; Cohen f2 = 0.133; p = 5.5 × 10-8). CONCLUSIONS: The rate of BVL is relatively stable throughout the course of RRMS. The accelerated BVL is weakly associated with concurrent higher disease activity, and timely escalation to high-efficacy immunotherapy helps decrease the rate of BVL.
650    _2
$a dospělí $7 D000328
650    _2
$a atrofie $x patologie $7 D001284
650    _2
$a mozek $x patologie $7 D001921
650    _2
$a kohortové studie $7 D015331
650    _2
$a progrese nemoci $7 D018450
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a longitudinální studie $7 D008137
650    _2
$a magnetická rezonanční tomografie $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a roztroušená skleróza $x patologie $7 D009103
650    _2
$a prospektivní studie $7 D011446
655    _2
$a klinické zkoušky $7 D016430
655    _2
$a časopisecké články $7 D016428
655    _2
$a pozorovací studie $7 D064888
655    _2
$a randomizované kontrolované studie $7 D016449
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Krasensky, Jan $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
700    1_
$a Malpas, Charles $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
700    1_
$a Bergsland, Niels $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
700    1_
$a Dwyer, Michael G $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
700    1_
$a Kubala Havrdova, Eva $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
700    1_
$a Vaneckova, Manuela $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
700    1_
$a Horakova, Dana $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
700    1_
$a Zivadinov, Robert $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
700    1_
$a Kalincik, Tomas $u From the CORe (T.U., C.M., T.K.), Department of Medicine, the University of Melbourne, VIC, Australia; Department of Neurology and Center of Clinical Neuroscience (T.U., E.K.H., D.H.), Charles University in Prague, 1st Faculty of Medicine and General University Hospital; Department of Radiology (J.K., M.V.), Charles University in Prague, First Faculty of Medicine and General University Hospital in Prague, Czech Republic; Buffalo Neuroimaging Analysis Center (N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York; and Melbourne MS Centre (T.K.), Department of Neurology, the Royal Melbourne Hospital, VIC, Australia
773    0_
$w MED00186373 $t Neurology(R) neuroimmunology & neuroinflammation $x 2332-7812 $g Roč. 8, č. 3 (2021)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33727311 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127145151 $b ABA008
999    __
$a ok $b bmc $g 1751860 $s 1155679
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 8 $c 3 $e 20210316 $i 2332-7812 $m Neurology® neuroimmunology & neuroinflammation $n Neurol Neuroimmunol Neuroinflamm $x MED00186373
GRA    __
$a UL1 TR001412 $p NCATS NIH HHS $2 United States
LZP    __
$a Pubmed-20220113

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...