• Je něco špatně v tomto záznamu ?

Metabolic cardio- and reno-protective effects of empagliflozin in a prediabetic rat model

M. Huttl, I. Markova, D. Miklankova, O. Oliyarnyk, J. Trnovska, J. Kucera, R. Sedlacek, M. Haluzik, H. Malinska

. 2020 ; 71 (5) : . [pub] 20210116

Jazyk angličtina Země Polsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22004841

The mechanisms behind the cardiovascular and renal benefits of empagliflozin is not fully understood. The positive impact of the medication on cardiovascular mortality can not be solely attributed to its antidiabetic effect, with a metabolic mechanism possibly involved. To investigate the metabolic effects of empagliflozin treatment (10 mg/kg/day for 6 weeks), we used an adult male rat model with serious vascular complications associated with metabolic syndrome and prediabetes. Impaired glucose tolerance, severe albuminuria and impaired insulin sensitivity were induced by intragastric administration of methylglyoxal and high sucrose diet feeding for four months. Although empagliflozin decreased body weight, non-fasting glucose and insulin, glucagon levels remained unchanged. In addition, empagliflozin increased adiponectin levels (+40%; p < 0.01) and improved skeletal muscle insulin sensitivity. Increased non-esterified fatty acids (NEFA) in empagliflozin-treated rats is understood to generate ketone bodies. Empagliflozin increased β-hydroxybutyrate levels in serum (+66%; p < 0.05) and the myocardium (30%; p < 0.01), suggesting its possible involvement as an alternative substrate for metabolism. Empagliflozin switched substrate utilisation in the myocardium, diverting glucose oxidation to fatty acid oxidation. Representing another favorable effect, empagliflozin also contributed to decreased uric acid plasma levels (-19%; p < 0.05). In the kidney cortex, empagliflozin improved oxidative and dicarbonyl stress parameters and increased gene expression of β-hydroxybutyrate dehydrogenase, an enzyme involved in ketone body utilisation. In addition, empagliflozin decreased microalbuminuria (-27%; p < 0.01) and urinary neutrophil gelatinase-associated lipocalin (NGAL) excretion (-29%; p < 0.01). Our results reveal the important systemic metabolic effect of empagliflozin on alterations in substrate utilisation and on increased ketone body use in prediabetic rats. Improved oxidative and dicarbonyl stress and decreased uric acid are also possibly involved in the cardio- and reno-protective effects of empagliflozin.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22004841
003      
CZ-PrNML
005      
20220127144929.0
007      
ta
008      
220113s2020 pl f 000 0|eng||
009      
AR
024    7_
$a 10.26402/jpp.2020.5.04 $2 doi
035    __
$a (PubMed)33475091
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a pl
100    1_
$a Huttl, M $u Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
245    10
$a Metabolic cardio- and reno-protective effects of empagliflozin in a prediabetic rat model / $c M. Huttl, I. Markova, D. Miklankova, O. Oliyarnyk, J. Trnovska, J. Kucera, R. Sedlacek, M. Haluzik, H. Malinska
520    9_
$a The mechanisms behind the cardiovascular and renal benefits of empagliflozin is not fully understood. The positive impact of the medication on cardiovascular mortality can not be solely attributed to its antidiabetic effect, with a metabolic mechanism possibly involved. To investigate the metabolic effects of empagliflozin treatment (10 mg/kg/day for 6 weeks), we used an adult male rat model with serious vascular complications associated with metabolic syndrome and prediabetes. Impaired glucose tolerance, severe albuminuria and impaired insulin sensitivity were induced by intragastric administration of methylglyoxal and high sucrose diet feeding for four months. Although empagliflozin decreased body weight, non-fasting glucose and insulin, glucagon levels remained unchanged. In addition, empagliflozin increased adiponectin levels (+40%; p < 0.01) and improved skeletal muscle insulin sensitivity. Increased non-esterified fatty acids (NEFA) in empagliflozin-treated rats is understood to generate ketone bodies. Empagliflozin increased β-hydroxybutyrate levels in serum (+66%; p < 0.05) and the myocardium (30%; p < 0.01), suggesting its possible involvement as an alternative substrate for metabolism. Empagliflozin switched substrate utilisation in the myocardium, diverting glucose oxidation to fatty acid oxidation. Representing another favorable effect, empagliflozin also contributed to decreased uric acid plasma levels (-19%; p < 0.05). In the kidney cortex, empagliflozin improved oxidative and dicarbonyl stress parameters and increased gene expression of β-hydroxybutyrate dehydrogenase, an enzyme involved in ketone body utilisation. In addition, empagliflozin decreased microalbuminuria (-27%; p < 0.01) and urinary neutrophil gelatinase-associated lipocalin (NGAL) excretion (-29%; p < 0.01). Our results reveal the important systemic metabolic effect of empagliflozin on alterations in substrate utilisation and on increased ketone body use in prediabetic rats. Improved oxidative and dicarbonyl stress and decreased uric acid are also possibly involved in the cardio- and reno-protective effects of empagliflozin.
650    _2
$a zvířata $7 D000818
650    _2
$a benzhydrylové sloučeniny $x farmakologie $7 D001559
650    _2
$a modely nemocí na zvířatech $7 D004195
650    _2
$a glukosa $x metabolismus $7 D005947
650    _2
$a glukosidy $x farmakologie $7 D005960
650    _2
$a srdce $x účinky léků $7 D006321
650    _2
$a inzulinová rezistence $7 D007333
650    _2
$a ketolátky $x metabolismus $7 D007657
650    _2
$a ledviny $x účinky léků $x metabolismus $7 D007668
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a oxidační stres $x účinky léků $7 D018384
650    _2
$a prediabetes $x farmakoterapie $x metabolismus $7 D011236
650    _2
$a ochranné látky $x farmakologie $7 D020011
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a potkani Wistar $7 D017208
655    _2
$a časopisecké články $7 D016428
700    1_
$a Markova, I $u Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
700    1_
$a Miklankova, D $u Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
700    1_
$a Oliyarnyk, O $u Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
700    1_
$a Trnovska, J $u Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
700    1_
$a Kucera, J $u Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
700    1_
$a Sedlacek, R $u Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
700    1_
$a Haluzik, M $u Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
700    1_
$a Malinska, H $u Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic. hana.malinska@ikem.cz
773    0_
$w MED00002908 $t Journal of physiology and pharmacology : an official journal of the Polish Physiological Society $x 1899-1505 $g Roč. 71, č. 5 (2020)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33475091 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127144926 $b ABA008
999    __
$a ok $b bmc $g 1752136 $s 1155990
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 71 $c 5 $e 20210116 $i 1899-1505 $m Journal of physiology and pharmacology $n J Physiol Pharmacol $x MED00002908
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...