• Je něco špatně v tomto záznamu ?

Consistency checks to improve measurement with the Hamilton Rating Scale for Depression (HAM-D)

J. Rabinowitz, JBW. Williams, A. Anderson, DJ. Fu, N. Hefting, B. Kadriu, A. Kott, A. Mahableshwarkar, J. Sedway, D. Williamson, C. Yavorsky, NR. Schooler

. 2022 ; 302 (-) : 273-279. [pub] 20220129

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22010705

BACKGROUND: Symptom manifestations in mood disorders can be subtle. Cumulatively, small imprecisions in measurement can limit our ability to measure treatment response accurately. Logical and statistical consistency checks between item responses (i.e., cross-sectionally) and across administrations (i.e., longitudinally) can contribute to improving measurement fidelity. METHODS: The International Society for CNS Clinical Trials and Methodology convened an expert Working Group that assembled flags indicating consistency/inconsistency ratings for the Hamilton Rating Scale for Depression (HAM-D17), a widely-used rating scale in studies of depression. Proposed flags were applied to assessments derived from the NEWMEDS data repository of 95,468 HAM-D administrations from 32 registration trials of antidepressant medications and to Monte Carlo-simulated data as a proxy for applying flags under conditions of known inconsistency. RESULTS: Two types of flags were derived: logical consistency checks and statistical outlier-response pattern checks. Almost thirty percent of the HAMD administrations had at least one logical scoring inconsistency flag. Seven percent had flags judged to suggest that a thorough review of rating is warranted. Almost 22% of the administrations had at least one statistical outlier flag and 7.9% had more than one. Most of the administrations in the Monte Carlo- simulated data raised multiple flags. LIMITATIONS: Flagged ratings may represent less-common presentations of administrations done correctly. CONCLUSIONS: Application of flags to clinical ratings may aid in detecting imprecise measurement. Reviewing and addressing these flags may improve reliability and validity of clinical trial data.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22010705
003      
CZ-PrNML
005      
20220506130008.0
007      
ta
008      
220425s2022 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jad.2022.01.105 $2 doi
035    __
$a (PubMed)35101520
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Rabinowitz, Jonathan $u Bar Ilan University, Ramat Gan, Israel. Electronic address: jonathan.rabinowitz@biu.ac.il
245    10
$a Consistency checks to improve measurement with the Hamilton Rating Scale for Depression (HAM-D) / $c J. Rabinowitz, JBW. Williams, A. Anderson, DJ. Fu, N. Hefting, B. Kadriu, A. Kott, A. Mahableshwarkar, J. Sedway, D. Williamson, C. Yavorsky, NR. Schooler
520    9_
$a BACKGROUND: Symptom manifestations in mood disorders can be subtle. Cumulatively, small imprecisions in measurement can limit our ability to measure treatment response accurately. Logical and statistical consistency checks between item responses (i.e., cross-sectionally) and across administrations (i.e., longitudinally) can contribute to improving measurement fidelity. METHODS: The International Society for CNS Clinical Trials and Methodology convened an expert Working Group that assembled flags indicating consistency/inconsistency ratings for the Hamilton Rating Scale for Depression (HAM-D17), a widely-used rating scale in studies of depression. Proposed flags were applied to assessments derived from the NEWMEDS data repository of 95,468 HAM-D administrations from 32 registration trials of antidepressant medications and to Monte Carlo-simulated data as a proxy for applying flags under conditions of known inconsistency. RESULTS: Two types of flags were derived: logical consistency checks and statistical outlier-response pattern checks. Almost thirty percent of the HAMD administrations had at least one logical scoring inconsistency flag. Seven percent had flags judged to suggest that a thorough review of rating is warranted. Almost 22% of the administrations had at least one statistical outlier flag and 7.9% had more than one. Most of the administrations in the Monte Carlo- simulated data raised multiple flags. LIMITATIONS: Flagged ratings may represent less-common presentations of administrations done correctly. CONCLUSIONS: Application of flags to clinical ratings may aid in detecting imprecise measurement. Reviewing and addressing these flags may improve reliability and validity of clinical trial data.
650    12
$a antidepresiva $x terapeutické užití $7 D000928
650    12
$a deprese $x diagnóza $7 D003863
650    _2
$a lidé $7 D006801
650    _2
$a poruchy nálady $x farmakoterapie $7 D019964
650    _2
$a psychiatrické posuzovací škály $7 D011569
650    _2
$a reprodukovatelnost výsledků $7 D015203
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Williams, Janet B W $u Department of Psychiatry, Columbia University, c/o 2466 Westlake Ave N., #19, Seattle, WA 98109, United States
700    1_
$a Anderson, Ariana $u Department of Psychiatry and Biobehavioral Sciences, UCLA, 760 Westwood Plaza, Ste. 28-224, Los Angeles, CA 90095, United States
700    1_
$a Fu, Dong Jing $u Janssen Scientific Affairs, LLC, 1125 Trenton-Harbourton Rd, Titusville, NJ 08560, United States
700    1_
$a Hefting, Nanco $u Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
700    1_
$a Kadriu, Bashkim $u Janssen Research & Development, 3210 Merryfield Row, San Diego, CA 92121, United States
700    1_
$a Kott, Alan $u Signant Health, Prague, Czech Republic
700    1_
$a Mahableshwarkar, Atul $u Emalex Biosciences Inc., 330N. Wabash, Suite 3500, Chicago, IL 60611, United States
700    1_
$a Sedway, Jan $u VeraSci, 3211 Shannon Road, Suite 300, Durham, NC 27707, United States
700    1_
$a Williamson, David $u Janssen Scientific Affairs, LLC, 1125 Trenton-Harbourton Rd, Titusville, NJ 08560, United States; Department of Psychiatry and Health Behavior, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States
700    1_
$a Yavorsky, Christian $u Valis Bioscience, 1426 Parker St, Berkeley, CA, United States
700    1_
$a Schooler, Nina R $u SUNY Downstate Health Sciences Center, 450 Clarkson Avenue, MSC 1203, Brooklyn, NY 11203, United States
773    0_
$w MED00002501 $t Journal of affective disorders $x 1573-2517 $g Roč. 302, č. - (2022), s. 273-279
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35101520 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220425 $b ABA008
991    __
$a 20220506130000 $b ABA008
999    __
$a ok $b bmc $g 1788714 $s 1161903
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 302 $c - $d 273-279 $e 20220129 $i 1573-2517 $m Journal of affective disorders $n J Affect Disord $x MED00002501
LZP    __
$a Pubmed-20220425

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...