-
Je něco špatně v tomto záznamu ?
Consistency checks to improve measurement with the Hamilton Rating Scale for Depression (HAM-D)
J. Rabinowitz, JBW. Williams, A. Anderson, DJ. Fu, N. Hefting, B. Kadriu, A. Kott, A. Mahableshwarkar, J. Sedway, D. Williamson, C. Yavorsky, NR. Schooler
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- antidepresiva * terapeutické užití MeSH
- deprese * diagnóza MeSH
- lidé MeSH
- poruchy nálady farmakoterapie MeSH
- psychiatrické posuzovací škály MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Symptom manifestations in mood disorders can be subtle. Cumulatively, small imprecisions in measurement can limit our ability to measure treatment response accurately. Logical and statistical consistency checks between item responses (i.e., cross-sectionally) and across administrations (i.e., longitudinally) can contribute to improving measurement fidelity. METHODS: The International Society for CNS Clinical Trials and Methodology convened an expert Working Group that assembled flags indicating consistency/inconsistency ratings for the Hamilton Rating Scale for Depression (HAM-D17), a widely-used rating scale in studies of depression. Proposed flags were applied to assessments derived from the NEWMEDS data repository of 95,468 HAM-D administrations from 32 registration trials of antidepressant medications and to Monte Carlo-simulated data as a proxy for applying flags under conditions of known inconsistency. RESULTS: Two types of flags were derived: logical consistency checks and statistical outlier-response pattern checks. Almost thirty percent of the HAMD administrations had at least one logical scoring inconsistency flag. Seven percent had flags judged to suggest that a thorough review of rating is warranted. Almost 22% of the administrations had at least one statistical outlier flag and 7.9% had more than one. Most of the administrations in the Monte Carlo- simulated data raised multiple flags. LIMITATIONS: Flagged ratings may represent less-common presentations of administrations done correctly. CONCLUSIONS: Application of flags to clinical ratings may aid in detecting imprecise measurement. Reviewing and addressing these flags may improve reliability and validity of clinical trial data.
Bar Ilan University Ramat Gan Israel
Emalex Biosciences Inc 330N Wabash Suite 3500 Chicago IL 60611 United States
Janssen Research and Development 3210 Merryfield Row San Diego CA 92121 United States
Janssen Scientific Affairs LLC 1125 Trenton Harbourton Rd Titusville NJ 08560 United States
Lundbeck A S Ottiliavej 9 2500 Valby Denmark
Signant Health Prague Czech Republic
SUNY Downstate Health Sciences Center 450 Clarkson Avenue MSC 1203 Brooklyn NY 11203 United States
Valis Bioscience 1426 Parker St Berkeley CA United States
VeraSci 3211 Shannon Road Suite 300 Durham NC 27707 United States
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22010705
- 003
- CZ-PrNML
- 005
- 20220506130008.0
- 007
- ta
- 008
- 220425s2022 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jad.2022.01.105 $2 doi
- 035 __
- $a (PubMed)35101520
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Rabinowitz, Jonathan $u Bar Ilan University, Ramat Gan, Israel. Electronic address: jonathan.rabinowitz@biu.ac.il
- 245 10
- $a Consistency checks to improve measurement with the Hamilton Rating Scale for Depression (HAM-D) / $c J. Rabinowitz, JBW. Williams, A. Anderson, DJ. Fu, N. Hefting, B. Kadriu, A. Kott, A. Mahableshwarkar, J. Sedway, D. Williamson, C. Yavorsky, NR. Schooler
- 520 9_
- $a BACKGROUND: Symptom manifestations in mood disorders can be subtle. Cumulatively, small imprecisions in measurement can limit our ability to measure treatment response accurately. Logical and statistical consistency checks between item responses (i.e., cross-sectionally) and across administrations (i.e., longitudinally) can contribute to improving measurement fidelity. METHODS: The International Society for CNS Clinical Trials and Methodology convened an expert Working Group that assembled flags indicating consistency/inconsistency ratings for the Hamilton Rating Scale for Depression (HAM-D17), a widely-used rating scale in studies of depression. Proposed flags were applied to assessments derived from the NEWMEDS data repository of 95,468 HAM-D administrations from 32 registration trials of antidepressant medications and to Monte Carlo-simulated data as a proxy for applying flags under conditions of known inconsistency. RESULTS: Two types of flags were derived: logical consistency checks and statistical outlier-response pattern checks. Almost thirty percent of the HAMD administrations had at least one logical scoring inconsistency flag. Seven percent had flags judged to suggest that a thorough review of rating is warranted. Almost 22% of the administrations had at least one statistical outlier flag and 7.9% had more than one. Most of the administrations in the Monte Carlo- simulated data raised multiple flags. LIMITATIONS: Flagged ratings may represent less-common presentations of administrations done correctly. CONCLUSIONS: Application of flags to clinical ratings may aid in detecting imprecise measurement. Reviewing and addressing these flags may improve reliability and validity of clinical trial data.
- 650 12
- $a antidepresiva $x terapeutické užití $7 D000928
- 650 12
- $a deprese $x diagnóza $7 D003863
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a poruchy nálady $x farmakoterapie $7 D019964
- 650 _2
- $a psychiatrické posuzovací škály $7 D011569
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Williams, Janet B W $u Department of Psychiatry, Columbia University, c/o 2466 Westlake Ave N., #19, Seattle, WA 98109, United States
- 700 1_
- $a Anderson, Ariana $u Department of Psychiatry and Biobehavioral Sciences, UCLA, 760 Westwood Plaza, Ste. 28-224, Los Angeles, CA 90095, United States
- 700 1_
- $a Fu, Dong Jing $u Janssen Scientific Affairs, LLC, 1125 Trenton-Harbourton Rd, Titusville, NJ 08560, United States
- 700 1_
- $a Hefting, Nanco $u Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
- 700 1_
- $a Kadriu, Bashkim $u Janssen Research & Development, 3210 Merryfield Row, San Diego, CA 92121, United States
- 700 1_
- $a Kott, Alan $u Signant Health, Prague, Czech Republic
- 700 1_
- $a Mahableshwarkar, Atul $u Emalex Biosciences Inc., 330N. Wabash, Suite 3500, Chicago, IL 60611, United States
- 700 1_
- $a Sedway, Jan $u VeraSci, 3211 Shannon Road, Suite 300, Durham, NC 27707, United States
- 700 1_
- $a Williamson, David $u Janssen Scientific Affairs, LLC, 1125 Trenton-Harbourton Rd, Titusville, NJ 08560, United States; Department of Psychiatry and Health Behavior, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States
- 700 1_
- $a Yavorsky, Christian $u Valis Bioscience, 1426 Parker St, Berkeley, CA, United States
- 700 1_
- $a Schooler, Nina R $u SUNY Downstate Health Sciences Center, 450 Clarkson Avenue, MSC 1203, Brooklyn, NY 11203, United States
- 773 0_
- $w MED00002501 $t Journal of affective disorders $x 1573-2517 $g Roč. 302, č. - (2022), s. 273-279
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35101520 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220425 $b ABA008
- 991 __
- $a 20220506130000 $b ABA008
- 999 __
- $a ok $b bmc $g 1788714 $s 1161903
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 302 $c - $d 273-279 $e 20220129 $i 1573-2517 $m Journal of affective disorders $n J Affect Disord $x MED00002501
- LZP __
- $a Pubmed-20220425