• Je něco špatně v tomto záznamu ?

Evaluation of an integrative Bayesian peptide detection approach on a combinatorial peptide library

M. Hruska, D. Holub

. 2021 ; 27 (6) : 217-234. [pub] 20220106

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22011805

Detection of peptides lies at the core of bottom-up proteomics analyses. We examined a Bayesian approach to peptide detection, integrating match-based models (fragments, retention time, isotopic distribution, and precursor mass) and peptide prior probability models under a unified probabilistic framework. To assess the relevance of these models and their various combinations, we employed a complete- and a tail-complete search of a low-precursor-mass synthetic peptide library based on oncogenic KRAS peptides. The fragment match was by far the most informative match-based model, while the retention time match was the only remaining such model with an appreciable impact--increasing correct detections by around 8 %. A peptide prior probability model built from a reference proteome greatly improved the detection over a uniform prior, essentially transforming de novo sequencing into a reference-guided search. The knowledge of a correct sequence tag in advance to peptide-spectrum matching had only a moderate impact on peptide detection unless the tag was long and of high certainty. The approach also derived more precise error rates on the analyzed combinatorial peptide library than those estimated using PeptideProphet and Percolator, showing its potential applicability for the detection of homologous peptides. Although the approach requires further computational developments for routine data analysis, it illustrates the value of peptide prior probabilities and presents a Bayesian approach for their incorporation into peptide detection.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22011805
003      
CZ-PrNML
005      
20220506130820.0
007      
ta
008      
220425s2021 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1177/14690667211066725 $2 doi
035    __
$a (PubMed)34989269
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Hruska, Miroslav $u Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, 98735Palacky University, Olomouc, Czech Republic $u Department of Computer Science, Faculty of Science, 98735Palacky University, Olomouc, Czech Republic $1 https://orcid.org/0000000274390860
245    10
$a Evaluation of an integrative Bayesian peptide detection approach on a combinatorial peptide library / $c M. Hruska, D. Holub
520    9_
$a Detection of peptides lies at the core of bottom-up proteomics analyses. We examined a Bayesian approach to peptide detection, integrating match-based models (fragments, retention time, isotopic distribution, and precursor mass) and peptide prior probability models under a unified probabilistic framework. To assess the relevance of these models and their various combinations, we employed a complete- and a tail-complete search of a low-precursor-mass synthetic peptide library based on oncogenic KRAS peptides. The fragment match was by far the most informative match-based model, while the retention time match was the only remaining such model with an appreciable impact--increasing correct detections by around 8 %. A peptide prior probability model built from a reference proteome greatly improved the detection over a uniform prior, essentially transforming de novo sequencing into a reference-guided search. The knowledge of a correct sequence tag in advance to peptide-spectrum matching had only a moderate impact on peptide detection unless the tag was long and of high certainty. The approach also derived more precise error rates on the analyzed combinatorial peptide library than those estimated using PeptideProphet and Percolator, showing its potential applicability for the detection of homologous peptides. Although the approach requires further computational developments for routine data analysis, it illustrates the value of peptide prior probabilities and presents a Bayesian approach for their incorporation into peptide detection.
650    _2
$a algoritmy $7 D000465
650    _2
$a Bayesova věta $7 D001499
650    _2
$a databáze proteinů $7 D030562
650    12
$a peptidová knihovna $7 D019151
650    12
$a peptidy $x analýza $7 D010455
650    _2
$a proteom $x analýza $7 D020543
650    _2
$a proteomika $7 D040901
655    _2
$a časopisecké články $7 D016428
700    1_
$a Holub, Dusan $u Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, 98735Palacky University, Olomouc, Czech Republic
773    0_
$w MED00169260 $t European journal of mass spectrometry (Chichester, England) $x 1751-6838 $g Roč. 27, č. 6 (2021), s. 217-234
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34989269 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220425 $b ABA008
991    __
$a 20220506130813 $b ABA008
999    __
$a ok $b bmc $g 1789420 $s 1163003
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 27 $c 6 $d 217-234 $e 20220106 $i 1751-6838 $m European journal of mass spectrometry $n Eur. j. mass spectrom. $x MED00169260
LZP    __
$a Pubmed-20220425

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...