-
Je něco špatně v tomto záznamu ?
XRCC1 protects transcription from toxic PARP1 activity during DNA base excision repair
M. Adamowicz, R. Hailstone, AA. Demin, E. Komulainen, H. Hanzlikova, J. Brazina, A. Gautam, SE. Wells, KW. Caldecott
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/P010121/1
Medical Research Council - United Kingdom
NLK
ProQuest Central
od 2000-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2000-01-01 do Před 1 rokem
- MeSH
- DNA genetika MeSH
- genetická transkripce genetika MeSH
- histony metabolismus MeSH
- jednořetězcové zlomy DNA * MeSH
- lidé MeSH
- myši knockoutované MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- oprava DNA genetika MeSH
- oxidační stres genetika MeSH
- peroxid vodíku toxicita MeSH
- poly-ADP-ribóza-polymeráza 1 genetika metabolismus MeSH
- protein XRCC1 genetika metabolismus MeSH
- specifické proteázy ubikvitinu metabolismus MeSH
- ubikvitinace fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Genetic defects in the repair of DNA single-strand breaks (SSBs) can result in neurological disease triggered by toxic activity of the single-strand-break sensor protein PARP1. However, the mechanism(s) by which this toxic PARP1 activity triggers cellular dysfunction are unclear. Here we show that human cells lacking XRCC1 fail to rapidly recover transcription following DNA base damage, a phenotype also observed in patient-derived fibroblasts with XRCC1 mutations and Xrcc1-/- mouse neurons. This defect is caused by excessive/aberrant PARP1 activity during DNA base excision repair, resulting from the loss of PARP1 regulation by XRCC1. We show that aberrant PARP1 activity suppresses transcriptional recovery during base excision repair by promoting excessive recruitment and activity of the ubiquitin protease USP3, which as a result reduces the level of monoubiquitinated histones important for normal transcriptional regulation. Importantly, inhibition and/or deletion of PARP1 or USP3 restores transcriptional recovery in XRCC1-/- cells, highlighting PARP1 and USP3 as possible therapeutic targets in neurological disease.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22011849
- 003
- CZ-PrNML
- 005
- 20220506130236.0
- 007
- ta
- 008
- 220425s2021 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41556-021-00792-w $2 doi
- 035 __
- $a (PubMed)34811483
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Adamowicz, Marek $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
- 245 10
- $a XRCC1 protects transcription from toxic PARP1 activity during DNA base excision repair / $c M. Adamowicz, R. Hailstone, AA. Demin, E. Komulainen, H. Hanzlikova, J. Brazina, A. Gautam, SE. Wells, KW. Caldecott
- 520 9_
- $a Genetic defects in the repair of DNA single-strand breaks (SSBs) can result in neurological disease triggered by toxic activity of the single-strand-break sensor protein PARP1. However, the mechanism(s) by which this toxic PARP1 activity triggers cellular dysfunction are unclear. Here we show that human cells lacking XRCC1 fail to rapidly recover transcription following DNA base damage, a phenotype also observed in patient-derived fibroblasts with XRCC1 mutations and Xrcc1-/- mouse neurons. This defect is caused by excessive/aberrant PARP1 activity during DNA base excision repair, resulting from the loss of PARP1 regulation by XRCC1. We show that aberrant PARP1 activity suppresses transcriptional recovery during base excision repair by promoting excessive recruitment and activity of the ubiquitin protease USP3, which as a result reduces the level of monoubiquitinated histones important for normal transcriptional regulation. Importantly, inhibition and/or deletion of PARP1 or USP3 restores transcriptional recovery in XRCC1-/- cells, highlighting PARP1 and USP3 as possible therapeutic targets in neurological disease.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a DNA $x genetika $7 D004247
- 650 12
- $a jednořetězcové zlomy DNA $7 D053904
- 650 _2
- $a oprava DNA $x genetika $7 D004260
- 650 _2
- $a histony $x metabolismus $7 D006657
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a peroxid vodíku $x toxicita $7 D006861
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši knockoutované $7 D018345
- 650 _2
- $a oxidační stres $x genetika $7 D018384
- 650 _2
- $a poly-ADP-ribóza-polymeráza 1 $x genetika $x metabolismus $7 D000071137
- 650 _2
- $a genetická transkripce $x genetika $7 D014158
- 650 _2
- $a specifické proteázy ubikvitinu $x metabolismus $7 D064570
- 650 _2
- $a ubikvitinace $x fyziologie $7 D054875
- 650 _2
- $a protein XRCC1 $x genetika $x metabolismus $7 D000076105
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Hailstone, Richard $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
- 700 1_
- $a Demin, Annie A $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
- 700 1_
- $a Komulainen, Emilia $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
- 700 1_
- $a Hanzlikova, Hana $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK $u Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Science, Prague, Czech Republic $1 https://orcid.org/0000000172357269 $7 xx0140321
- 700 1_
- $a Brazina, Jan $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
- 700 1_
- $a Gautam, Amit $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
- 700 1_
- $a Wells, Sophie E $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
- 700 1_
- $a Caldecott, Keith W $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK. k.w.caldecott@sussex.ac.uk $u Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Science, Prague, Czech Republic. k.w.caldecott@sussex.ac.uk $1 https://orcid.org/0000000342559016
- 773 0_
- $w MED00005249 $t Nature cell biology $x 1476-4679 $g Roč. 23, č. 12 (2021), s. 1287-1298
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34811483 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220425 $b ABA008
- 991 __
- $a 20220506130228 $b ABA008
- 999 __
- $a ok $b bmc $g 1789449 $s 1163050
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 23 $c 12 $d 1287-1298 $e 20211122 $i 1476-4679 $m Nature cell biology $n Nat Cell Biol $x MED00005249
- GRA __
- $a MR/P010121/1 $p Medical Research Council $2 United Kingdom
- LZP __
- $a Pubmed-20220425