• Je něco špatně v tomto záznamu ?

XRCC1 protects transcription from toxic PARP1 activity during DNA base excision repair

M. Adamowicz, R. Hailstone, AA. Demin, E. Komulainen, H. Hanzlikova, J. Brazina, A. Gautam, SE. Wells, KW. Caldecott

. 2021 ; 23 (12) : 1287-1298. [pub] 20211122

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22011849

Grantová podpora
MR/P010121/1 Medical Research Council - United Kingdom

E-zdroje Online Plný text

NLK ProQuest Central od 2000-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2000-01-01 do Před 1 rokem

Genetic defects in the repair of DNA single-strand breaks (SSBs) can result in neurological disease triggered by toxic activity of the single-strand-break sensor protein PARP1. However, the mechanism(s) by which this toxic PARP1 activity triggers cellular dysfunction are unclear. Here we show that human cells lacking XRCC1 fail to rapidly recover transcription following DNA base damage, a phenotype also observed in patient-derived fibroblasts with XRCC1 mutations and Xrcc1-/- mouse neurons. This defect is caused by excessive/aberrant PARP1 activity during DNA base excision repair, resulting from the loss of PARP1 regulation by XRCC1. We show that aberrant PARP1 activity suppresses transcriptional recovery during base excision repair by promoting excessive recruitment and activity of the ubiquitin protease USP3, which as a result reduces the level of monoubiquitinated histones important for normal transcriptional regulation. Importantly, inhibition and/or deletion of PARP1 or USP3 restores transcriptional recovery in XRCC1-/- cells, highlighting PARP1 and USP3 as possible therapeutic targets in neurological disease.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22011849
003      
CZ-PrNML
005      
20220506130236.0
007      
ta
008      
220425s2021 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41556-021-00792-w $2 doi
035    __
$a (PubMed)34811483
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Adamowicz, Marek $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
245    10
$a XRCC1 protects transcription from toxic PARP1 activity during DNA base excision repair / $c M. Adamowicz, R. Hailstone, AA. Demin, E. Komulainen, H. Hanzlikova, J. Brazina, A. Gautam, SE. Wells, KW. Caldecott
520    9_
$a Genetic defects in the repair of DNA single-strand breaks (SSBs) can result in neurological disease triggered by toxic activity of the single-strand-break sensor protein PARP1. However, the mechanism(s) by which this toxic PARP1 activity triggers cellular dysfunction are unclear. Here we show that human cells lacking XRCC1 fail to rapidly recover transcription following DNA base damage, a phenotype also observed in patient-derived fibroblasts with XRCC1 mutations and Xrcc1-/- mouse neurons. This defect is caused by excessive/aberrant PARP1 activity during DNA base excision repair, resulting from the loss of PARP1 regulation by XRCC1. We show that aberrant PARP1 activity suppresses transcriptional recovery during base excision repair by promoting excessive recruitment and activity of the ubiquitin protease USP3, which as a result reduces the level of monoubiquitinated histones important for normal transcriptional regulation. Importantly, inhibition and/or deletion of PARP1 or USP3 restores transcriptional recovery in XRCC1-/- cells, highlighting PARP1 and USP3 as possible therapeutic targets in neurological disease.
650    _2
$a zvířata $7 D000818
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a DNA $x genetika $7 D004247
650    12
$a jednořetězcové zlomy DNA $7 D053904
650    _2
$a oprava DNA $x genetika $7 D004260
650    _2
$a histony $x metabolismus $7 D006657
650    _2
$a lidé $7 D006801
650    _2
$a peroxid vodíku $x toxicita $7 D006861
650    _2
$a myši $7 D051379
650    _2
$a myši knockoutované $7 D018345
650    _2
$a oxidační stres $x genetika $7 D018384
650    _2
$a poly-ADP-ribóza-polymeráza 1 $x genetika $x metabolismus $7 D000071137
650    _2
$a genetická transkripce $x genetika $7 D014158
650    _2
$a specifické proteázy ubikvitinu $x metabolismus $7 D064570
650    _2
$a ubikvitinace $x fyziologie $7 D054875
650    _2
$a protein XRCC1 $x genetika $x metabolismus $7 D000076105
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Hailstone, Richard $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
700    1_
$a Demin, Annie A $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
700    1_
$a Komulainen, Emilia $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
700    1_
$a Hanzlikova, Hana $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK $u Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Science, Prague, Czech Republic $1 https://orcid.org/0000000172357269 $7 xx0140321
700    1_
$a Brazina, Jan $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
700    1_
$a Gautam, Amit $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
700    1_
$a Wells, Sophie E $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
700    1_
$a Caldecott, Keith W $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK. k.w.caldecott@sussex.ac.uk $u Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Science, Prague, Czech Republic. k.w.caldecott@sussex.ac.uk $1 https://orcid.org/0000000342559016
773    0_
$w MED00005249 $t Nature cell biology $x 1476-4679 $g Roč. 23, č. 12 (2021), s. 1287-1298
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34811483 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220425 $b ABA008
991    __
$a 20220506130228 $b ABA008
999    __
$a ok $b bmc $g 1789449 $s 1163050
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 23 $c 12 $d 1287-1298 $e 20211122 $i 1476-4679 $m Nature cell biology $n Nat Cell Biol $x MED00005249
GRA    __
$a MR/P010121/1 $p Medical Research Council $2 United Kingdom
LZP    __
$a Pubmed-20220425

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...