-
Something wrong with this record ?
XRCC1 protects transcription from toxic PARP1 activity during DNA base excision repair
M. Adamowicz, R. Hailstone, AA. Demin, E. Komulainen, H. Hanzlikova, J. Brazina, A. Gautam, SE. Wells, KW. Caldecott
Language English Country Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
MR/P010121/1
Medical Research Council - United Kingdom
NLK
ProQuest Central
from 2000-01-01 to 1 year ago
Health & Medicine (ProQuest)
from 2000-01-01 to 1 year ago
- MeSH
- DNA genetics MeSH
- Transcription, Genetic genetics MeSH
- Histones metabolism MeSH
- DNA Breaks, Single-Stranded * MeSH
- Humans MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- DNA Repair genetics MeSH
- Oxidative Stress genetics MeSH
- Hydrogen Peroxide toxicity MeSH
- Poly (ADP-Ribose) Polymerase-1 genetics metabolism MeSH
- X-ray Repair Cross Complementing Protein 1 genetics metabolism MeSH
- Ubiquitin-Specific Proteases metabolism MeSH
- Ubiquitination physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Genetic defects in the repair of DNA single-strand breaks (SSBs) can result in neurological disease triggered by toxic activity of the single-strand-break sensor protein PARP1. However, the mechanism(s) by which this toxic PARP1 activity triggers cellular dysfunction are unclear. Here we show that human cells lacking XRCC1 fail to rapidly recover transcription following DNA base damage, a phenotype also observed in patient-derived fibroblasts with XRCC1 mutations and Xrcc1-/- mouse neurons. This defect is caused by excessive/aberrant PARP1 activity during DNA base excision repair, resulting from the loss of PARP1 regulation by XRCC1. We show that aberrant PARP1 activity suppresses transcriptional recovery during base excision repair by promoting excessive recruitment and activity of the ubiquitin protease USP3, which as a result reduces the level of monoubiquitinated histones important for normal transcriptional regulation. Importantly, inhibition and/or deletion of PARP1 or USP3 restores transcriptional recovery in XRCC1-/- cells, highlighting PARP1 and USP3 as possible therapeutic targets in neurological disease.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22011849
- 003
- CZ-PrNML
- 005
- 20220506130236.0
- 007
- ta
- 008
- 220425s2021 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41556-021-00792-w $2 doi
- 035 __
- $a (PubMed)34811483
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Adamowicz, Marek $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
- 245 10
- $a XRCC1 protects transcription from toxic PARP1 activity during DNA base excision repair / $c M. Adamowicz, R. Hailstone, AA. Demin, E. Komulainen, H. Hanzlikova, J. Brazina, A. Gautam, SE. Wells, KW. Caldecott
- 520 9_
- $a Genetic defects in the repair of DNA single-strand breaks (SSBs) can result in neurological disease triggered by toxic activity of the single-strand-break sensor protein PARP1. However, the mechanism(s) by which this toxic PARP1 activity triggers cellular dysfunction are unclear. Here we show that human cells lacking XRCC1 fail to rapidly recover transcription following DNA base damage, a phenotype also observed in patient-derived fibroblasts with XRCC1 mutations and Xrcc1-/- mouse neurons. This defect is caused by excessive/aberrant PARP1 activity during DNA base excision repair, resulting from the loss of PARP1 regulation by XRCC1. We show that aberrant PARP1 activity suppresses transcriptional recovery during base excision repair by promoting excessive recruitment and activity of the ubiquitin protease USP3, which as a result reduces the level of monoubiquitinated histones important for normal transcriptional regulation. Importantly, inhibition and/or deletion of PARP1 or USP3 restores transcriptional recovery in XRCC1-/- cells, highlighting PARP1 and USP3 as possible therapeutic targets in neurological disease.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a DNA $x genetika $7 D004247
- 650 12
- $a jednořetězcové zlomy DNA $7 D053904
- 650 _2
- $a oprava DNA $x genetika $7 D004260
- 650 _2
- $a histony $x metabolismus $7 D006657
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a peroxid vodíku $x toxicita $7 D006861
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši knockoutované $7 D018345
- 650 _2
- $a oxidační stres $x genetika $7 D018384
- 650 _2
- $a poly(ADP-ribosa)polymerasa 1 $x genetika $x metabolismus $7 D000071137
- 650 _2
- $a genetická transkripce $x genetika $7 D014158
- 650 _2
- $a specifické proteázy ubikvitinu $x metabolismus $7 D064570
- 650 _2
- $a ubikvitinace $x fyziologie $7 D054875
- 650 _2
- $a protein XRCC1 $x genetika $x metabolismus $7 D000076105
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Hailstone, Richard $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
- 700 1_
- $a Demin, Annie A $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
- 700 1_
- $a Komulainen, Emilia $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
- 700 1_
- $a Hanzlikova, Hana $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK $u Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Science, Prague, Czech Republic $1 https://orcid.org/0000000172357269 $7 xx0140321
- 700 1_
- $a Brazina, Jan $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
- 700 1_
- $a Gautam, Amit $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
- 700 1_
- $a Wells, Sophie E $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
- 700 1_
- $a Caldecott, Keith W $u Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK. k.w.caldecott@sussex.ac.uk $u Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Science, Prague, Czech Republic. k.w.caldecott@sussex.ac.uk $1 https://orcid.org/0000000342559016
- 773 0_
- $w MED00005249 $t Nature cell biology $x 1476-4679 $g Roč. 23, č. 12 (2021), s. 1287-1298
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34811483 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220425 $b ABA008
- 991 __
- $a 20220506130228 $b ABA008
- 999 __
- $a ok $b bmc $g 1789449 $s 1163050
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 23 $c 12 $d 1287-1298 $e 20211122 $i 1476-4679 $m Nature cell biology $n Nat Cell Biol $x MED00005249
- GRA __
- $a MR/P010121/1 $p Medical Research Council $2 United Kingdom
- LZP __
- $a Pubmed-20220425