-
Je něco špatně v tomto záznamu ?
Enhancing cisplatin anticancer effectivity and migrastatic potential by modulation of molecular weight of oxidized dextran carrier
L. Münster, M. Fojtů, M. Muchová, F. Latečka, S. Káčerová, Z. Capáková, T. Juriňáková, I. Kuřitka, M. Masařík, J. Vícha
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články
- MeSH
- adenokarcinom farmakoterapie metabolismus MeSH
- buňky A549 MeSH
- cisplatina chemie farmakologie MeSH
- dextrany chemie MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- molekulová hmotnost MeSH
- nádory prostaty farmakoterapie metabolismus MeSH
- nádory vaječníků farmakoterapie metabolismus MeSH
- nádory farmakoterapie metabolismus MeSH
- nanogely chemie MeSH
- nosiče léků chemie MeSH
- oxidace-redukce MeSH
- pohyb buněk účinky léků MeSH
- protinádorové látky chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The molecular weight (Mw) of dextran derivatives, such as regioselectively oxidized dicarboxydextran (DXA), is greatly influencing their faith in an organism, which could be possibly used to improve anticancer drug delivery. Here we present a modified method of sulfonation-induced chain scission allowing direct and accurate control over the Mw of DXA without increasing its polydispersity. Prepared DXA derivatives (Mw = 10-185 kDa) have been conjugated to cisplatin and the Mw of the carrier found to have a significant impact on cisplatin release rates, in vitro cytotoxicity, and migrastatic potential. Conjugates with the high-Mw DXA showed particularly increased anticancer efficacy. The best conjugate was four times more effective against malignant prostatic cell lines than free cisplatin and significantly inhibited the ovarian cancer cell migration. This was traced to the characteristics of spontaneously formed cisplatin-crosslinked DXA nanogels influenced by Mw of DXA and amount of loaded cisplatin.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22011925
- 003
- CZ-PrNML
- 005
- 20220506130256.0
- 007
- ta
- 008
- 220425s2021 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.carbpol.2021.118461 $2 doi
- 035 __
- $a (PubMed)34420721
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Münster, L $u Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, CZ-760 01 Zlín, Czech Republic
- 245 10
- $a Enhancing cisplatin anticancer effectivity and migrastatic potential by modulation of molecular weight of oxidized dextran carrier / $c L. Münster, M. Fojtů, M. Muchová, F. Latečka, S. Káčerová, Z. Capáková, T. Juriňáková, I. Kuřitka, M. Masařík, J. Vícha
- 520 9_
- $a The molecular weight (Mw) of dextran derivatives, such as regioselectively oxidized dicarboxydextran (DXA), is greatly influencing their faith in an organism, which could be possibly used to improve anticancer drug delivery. Here we present a modified method of sulfonation-induced chain scission allowing direct and accurate control over the Mw of DXA without increasing its polydispersity. Prepared DXA derivatives (Mw = 10-185 kDa) have been conjugated to cisplatin and the Mw of the carrier found to have a significant impact on cisplatin release rates, in vitro cytotoxicity, and migrastatic potential. Conjugates with the high-Mw DXA showed particularly increased anticancer efficacy. The best conjugate was four times more effective against malignant prostatic cell lines than free cisplatin and significantly inhibited the ovarian cancer cell migration. This was traced to the characteristics of spontaneously formed cisplatin-crosslinked DXA nanogels influenced by Mw of DXA and amount of loaded cisplatin.
- 650 _2
- $a buňky A549 $7 D000072283
- 650 _2
- $a adenokarcinom $x farmakoterapie $x metabolismus $7 D000230
- 650 _2
- $a protinádorové látky $x chemie $x farmakologie $7 D000970
- 650 _2
- $a pohyb buněk $x účinky léků $7 D002465
- 650 _2
- $a cisplatina $x chemie $x farmakologie $7 D002945
- 650 _2
- $a dextrany $x chemie $7 D003911
- 650 _2
- $a nosiče léků $x chemie $7 D004337
- 650 _2
- $a lékové transportní systémy $x metody $7 D016503
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a molekulová hmotnost $7 D008970
- 650 _2
- $a nanogely $x chemie $7 D000080385
- 650 _2
- $a nádory $x farmakoterapie $x metabolismus $7 D009369
- 650 _2
- $a nádory vaječníků $x farmakoterapie $x metabolismus $7 D010051
- 650 _2
- $a oxidace-redukce $7 D010084
- 650 _2
- $a nádory prostaty $x farmakoterapie $x metabolismus $7 D011471
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Fojtů, M $u Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic; Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, Prague CZ-166 28, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
- 700 1_
- $a Muchová, M $u Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, CZ-760 01 Zlín, Czech Republic
- 700 1_
- $a Latečka, F $u Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, CZ-760 01 Zlín, Czech Republic
- 700 1_
- $a Káčerová, S $u Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, CZ-760 01 Zlín, Czech Republic
- 700 1_
- $a Capáková, Z $u Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, CZ-760 01 Zlín, Czech Republic
- 700 1_
- $a Juriňáková, T $u Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
- 700 1_
- $a Kuřitka, I $u Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, CZ-760 01 Zlín, Czech Republic
- 700 1_
- $a Masařík, M $u Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic; Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, Prague CZ-166 28, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50, Vestec, Czech Republic. Electronic address: masarik@med.muni.cz
- 700 1_
- $a Vícha, J $u Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, CZ-760 01 Zlín, Czech Republic. Electronic address: jvicha@utb.cz
- 773 0_
- $w MED00006149 $t Carbohydrate polymers $x 1879-1344 $g Roč. 272, č. - (2021), s. 118461
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34420721 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220425 $b ABA008
- 991 __
- $a 20220506130248 $b ABA008
- 999 __
- $a ok $b bmc $g 1789497 $s 1163126
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 272 $c - $d 118461 $e 20210721 $i 1879-1344 $m Carbohydrate polymers $n Carbohydr Polym $x MED00006149
- LZP __
- $a Pubmed-20220425