-
Je něco špatně v tomto záznamu ?
Spontaneous binding of single-stranded RNAs to RRM proteins visualized by unbiased atomistic simulations with a rescaled RNA force field
M. Krepl, P. Pokorná, V. Mlýnský, P. Stadlbauer, J. Šponer
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 1996
PubMed Central
od 1974
Europe PubMed Central
od 1974
Open Access Digital Library
od 1996-01-01 do 2030-12-31
Open Access Digital Library
od 1974-01-01
Open Access Digital Library
od 1996-01-01
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1996-01-01
Oxford Journals Open Access Collection
od 1996-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1974
PubMed
36454011
DOI
10.1093/nar/gkac1106
Knihovny.cz E-zdroje
- MeSH
- HuR protein metabolismus MeSH
- motiv rozpoznávající RNA genetika MeSH
- proteiny vázající RNA * metabolismus MeSH
- RNA * chemie MeSH
- RRM proteiny metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recognition of single-stranded RNA (ssRNA) by RNA recognition motif (RRM) domains is an important class of protein-RNA interactions. Many such complexes were characterized using nuclear magnetic resonance (NMR) and/or X-ray crystallography techniques, revealing ensemble-averaged pictures of the bound states. However, it is becoming widely accepted that better understanding of protein-RNA interactions would be obtained from ensemble descriptions. Indeed, earlier molecular dynamics simulations of bound states indicated visible dynamics at the RNA-RRM interfaces. Here, we report the first atomistic simulation study of spontaneous binding of short RNA sequences to RRM domains of HuR and SRSF1 proteins. Using a millisecond-scale aggregate ensemble of unbiased simulations, we were able to observe a few dozen binding events. HuR RRM3 utilizes a pre-binding state to navigate the RNA sequence to its partially disordered bound state and then to dynamically scan its different binding registers. SRSF1 RRM2 binding is more straightforward but still multiple-pathway. The present study necessitated development of a goal-specific force field modification, scaling down the intramolecular van der Waals interactions of the RNA which also improves description of the RNA-RRM bound state. Our study opens up a new avenue for large-scale atomistic investigations of binding landscapes of protein-RNA complexes, and future perspectives of such research are discussed.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22032565
- 003
- CZ-PrNML
- 005
- 20230131150713.0
- 007
- ta
- 008
- 230120s2022 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/nar/gkac1106 $2 doi
- 035 __
- $a (PubMed)36454011
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Krepl, Miroslav $u Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic $1 https://orcid.org/0000000298334281
- 245 10
- $a Spontaneous binding of single-stranded RNAs to RRM proteins visualized by unbiased atomistic simulations with a rescaled RNA force field / $c M. Krepl, P. Pokorná, V. Mlýnský, P. Stadlbauer, J. Šponer
- 520 9_
- $a Recognition of single-stranded RNA (ssRNA) by RNA recognition motif (RRM) domains is an important class of protein-RNA interactions. Many such complexes were characterized using nuclear magnetic resonance (NMR) and/or X-ray crystallography techniques, revealing ensemble-averaged pictures of the bound states. However, it is becoming widely accepted that better understanding of protein-RNA interactions would be obtained from ensemble descriptions. Indeed, earlier molecular dynamics simulations of bound states indicated visible dynamics at the RNA-RRM interfaces. Here, we report the first atomistic simulation study of spontaneous binding of short RNA sequences to RRM domains of HuR and SRSF1 proteins. Using a millisecond-scale aggregate ensemble of unbiased simulations, we were able to observe a few dozen binding events. HuR RRM3 utilizes a pre-binding state to navigate the RNA sequence to its partially disordered bound state and then to dynamically scan its different binding registers. SRSF1 RRM2 binding is more straightforward but still multiple-pathway. The present study necessitated development of a goal-specific force field modification, scaling down the intramolecular van der Waals interactions of the RNA which also improves description of the RNA-RRM bound state. Our study opens up a new avenue for large-scale atomistic investigations of binding landscapes of protein-RNA complexes, and future perspectives of such research are discussed.
- 650 12
- $a RNA $x chemie $7 D012313
- 650 _2
- $a RRM proteiny $x metabolismus $7 D000067776
- 650 12
- $a proteiny vázající RNA $x metabolismus $7 D016601
- 650 _2
- $a motiv rozpoznávající RNA $x genetika $7 D000071377
- 650 _2
- $a HuR protein $x metabolismus $7 D000067780
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a vazebná místa $7 D001665
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Pokorná, Pavlína $u Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic $u National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- 700 1_
- $a Mlýnský, Vojtěch $u Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- 700 1_
- $a Stadlbauer, Petr $u Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic $1 https://orcid.org/0000000254708376
- 700 1_
- $a Šponer, Jiří $u Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- 773 0_
- $w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 50, č. 21 (2022), s. 12480-12496
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36454011 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230120 $b ABA008
- 991 __
- $a 20230131150709 $b ABA008
- 999 __
- $a ok $b bmc $g 1891376 $s 1183900
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2022 $b 50 $c 21 $d 12480-12496 $e 2022Nov28 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
- LZP __
- $a Pubmed-20230120