-
Je něco špatně v tomto záznamu ?
Profiling Physical Fitness of Physical Education Majors Using Unsupervised Machine Learning
DA. Bonilla, IA. Sánchez-Rojas, D. Mendoza-Romero, Y. Moreno, J. Kočí, LM. Gómez-Miranda, D. Rojas-Valverde, JL. Petro, RB. Kreider
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 2004
PubMed Central
od 2005
Europe PubMed Central
od 2005
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2004-01-01
Open Access Digital Library
od 2005-01-01
Medline Complete (EBSCOhost)
od 2008-12-01
Health & Medicine (ProQuest)
od 2009-01-01
Public Health Database (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2004
PubMed
36612474
DOI
10.3390/ijerph20010146
Knihovny.cz E-zdroje
- MeSH
- cvičení MeSH
- index tělesné hmotnosti MeSH
- lidé MeSH
- průřezové studie MeSH
- strojové učení bez učitele * MeSH
- tělesná výchova * MeSH
- tělesná výkonnost MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The academic curriculum has shown to promote sedentary behavior in college students. This study aimed to profile the physical fitness of physical education majors using unsupervised machine learning and to identify the differences between sexes, academic years, socioeconomic strata, and the generated profiles. A total of 542 healthy and physically active students (445 males, 97 females; 19.8 [2.2] years; 66.0 [10.3] kg; 169.5 [7.8] cm) participated in this cross-sectional study. Their indirect VO2max (Cooper and Shuttle-Run 20 m tests), lower-limb power (horizontal jump), sprint (30 m), agility (shuttle run), and flexibility (sit-and-reach) were assessed. The participants were profiled using clustering algorithms after setting the optimal number of clusters through an internal validation using R packages. Non-parametric tests were used to identify the differences (p < 0.05). The higher percentage of the population were freshmen (51.4%) and middle-income (64.0%) students. Seniors and juniors showed a better physical fitness than first-year students. No significant differences were found between their socioeconomic strata (p > 0.05). Two profiles were identified using hierarchical clustering (Cluster 1 = 318 vs. Cluster 2 = 224). The matching analysis revealed that physical fitness explained the variation in the data, with Cluster 2 as a sex-independent and more physically fit group. All variables differed significantly between the sexes (except the body mass index [p = 0.218]) and the generated profiles (except stature [p = 0.559] and flexibility [p = 0.115]). A multidimensional analysis showed that the body mass, cardiorespiratory fitness, and agility contributed the most to the data variation so that they can be used as profiling variables. This profiling method accurately identified the relevant variables to reinforce exercise recommendations in a low physical performance and overweight majors.
Clínica de Lesiones Deportivas Universidad Nacional Heredia 863000 Costa Rica
Department of Education Faculty of Education Charles University 11636 Prague Czech Republic
Sports Faculty Autonomous University of Baja California Tijuana 22390 Mexico
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23004896
- 003
- CZ-PrNML
- 005
- 20230425171800.0
- 007
- ta
- 008
- 230418s2022 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/ijerph20010146 $2 doi
- 035 __
- $a (PubMed)36612474
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Bonilla, Diego A $u Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá 110311, Colombia $u Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia $u Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia $u Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain $1 https://orcid.org/0000000226341220
- 245 10
- $a Profiling Physical Fitness of Physical Education Majors Using Unsupervised Machine Learning / $c DA. Bonilla, IA. Sánchez-Rojas, D. Mendoza-Romero, Y. Moreno, J. Kočí, LM. Gómez-Miranda, D. Rojas-Valverde, JL. Petro, RB. Kreider
- 520 9_
- $a The academic curriculum has shown to promote sedentary behavior in college students. This study aimed to profile the physical fitness of physical education majors using unsupervised machine learning and to identify the differences between sexes, academic years, socioeconomic strata, and the generated profiles. A total of 542 healthy and physically active students (445 males, 97 females; 19.8 [2.2] years; 66.0 [10.3] kg; 169.5 [7.8] cm) participated in this cross-sectional study. Their indirect VO2max (Cooper and Shuttle-Run 20 m tests), lower-limb power (horizontal jump), sprint (30 m), agility (shuttle run), and flexibility (sit-and-reach) were assessed. The participants were profiled using clustering algorithms after setting the optimal number of clusters through an internal validation using R packages. Non-parametric tests were used to identify the differences (p < 0.05). The higher percentage of the population were freshmen (51.4%) and middle-income (64.0%) students. Seniors and juniors showed a better physical fitness than first-year students. No significant differences were found between their socioeconomic strata (p > 0.05). Two profiles were identified using hierarchical clustering (Cluster 1 = 318 vs. Cluster 2 = 224). The matching analysis revealed that physical fitness explained the variation in the data, with Cluster 2 as a sex-independent and more physically fit group. All variables differed significantly between the sexes (except the body mass index [p = 0.218]) and the generated profiles (except stature [p = 0.559] and flexibility [p = 0.115]). A multidimensional analysis showed that the body mass, cardiorespiratory fitness, and agility contributed the most to the data variation so that they can be used as profiling variables. This profiling method accurately identified the relevant variables to reinforce exercise recommendations in a low physical performance and overweight majors.
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a průřezové studie $7 D003430
- 650 12
- $a strojové učení bez učitele $7 D000069558
- 650 12
- $a tělesná výchova $7 D010806
- 650 _2
- $a tělesná výkonnost $7 D010809
- 650 _2
- $a cvičení $7 D015444
- 650 _2
- $a index tělesné hmotnosti $7 D015992
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Sánchez-Rojas, Isabel A $u Grupo de Investigación Ciencias Aplicadas al Ejercicio, Deporte y Salud-GICAEDS, Universidad Santo Tomás, Bogotá 205070, Colombia $1 https://orcid.org/0000000255450127
- 700 1_
- $a Mendoza-Romero, Darío $u Grupo de Investigación Ciencias Aplicadas al Ejercicio, Deporte y Salud-GICAEDS, Universidad Santo Tomás, Bogotá 205070, Colombia $1 https://orcid.org/0000000289731541
- 700 1_
- $a Moreno, Yurany $u Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá 110311, Colombia
- 700 1_
- $a Kočí, Jana $u Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá 110311, Colombia $u Department of Education, Faculty of Education, Charles University, 11636 Prague, Czech Republic $1 https://orcid.org/0000000347145285
- 700 1_
- $a Gómez-Miranda, Luis M $u Sports Faculty, Autonomous University of Baja California, Tijuana 22390, Mexico
- 700 1_
- $a Rojas-Valverde, Daniel $u Núcleo de Estudios para el Alto Rendimiento y la Salud (NARS-CIDISAD), Escuela Ciencia del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia 863000, Costa Rica $u Clínica de Lesiones Deportivas (Rehab&Readapt), Escuela Ciencia del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia 863000, Costa Rica
- 700 1_
- $a Petro, Jorge L $u Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá 110311, Colombia $u Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia $1 https://orcid.org/0000000156781000
- 700 1_
- $a Kreider, Richard B $u Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA $1 https://orcid.org/0000000239061658
- 773 0_
- $w MED00176090 $t International journal of environmental research and public health $x 1660-4601 $g Roč. 20, č. 1 (2022)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36612474 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230418 $b ABA008
- 991 __
- $a 20230425171756 $b ABA008
- 999 __
- $a ok $b bmc $g 1925155 $s 1191105
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2022 $b 20 $c 1 $e 20221222 $i 1660-4601 $m International journal of environmental research and public health $n Int. j. environ. res. public health $x MED00176090
- LZP __
- $a Pubmed-20230418