• Je něco špatně v tomto záznamu ?

Profiling Physical Fitness of Physical Education Majors Using Unsupervised Machine Learning

DA. Bonilla, IA. Sánchez-Rojas, D. Mendoza-Romero, Y. Moreno, J. Kočí, LM. Gómez-Miranda, D. Rojas-Valverde, JL. Petro, RB. Kreider

. 2022 ; 20 (1) : . [pub] 20221222

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc23004896

The academic curriculum has shown to promote sedentary behavior in college students. This study aimed to profile the physical fitness of physical education majors using unsupervised machine learning and to identify the differences between sexes, academic years, socioeconomic strata, and the generated profiles. A total of 542 healthy and physically active students (445 males, 97 females; 19.8 [2.2] years; 66.0 [10.3] kg; 169.5 [7.8] cm) participated in this cross-sectional study. Their indirect VO2max (Cooper and Shuttle-Run 20 m tests), lower-limb power (horizontal jump), sprint (30 m), agility (shuttle run), and flexibility (sit-and-reach) were assessed. The participants were profiled using clustering algorithms after setting the optimal number of clusters through an internal validation using R packages. Non-parametric tests were used to identify the differences (p < 0.05). The higher percentage of the population were freshmen (51.4%) and middle-income (64.0%) students. Seniors and juniors showed a better physical fitness than first-year students. No significant differences were found between their socioeconomic strata (p > 0.05). Two profiles were identified using hierarchical clustering (Cluster 1 = 318 vs. Cluster 2 = 224). The matching analysis revealed that physical fitness explained the variation in the data, with Cluster 2 as a sex-independent and more physically fit group. All variables differed significantly between the sexes (except the body mass index [p = 0.218]) and the generated profiles (except stature [p = 0.559] and flexibility [p = 0.115]). A multidimensional analysis showed that the body mass, cardiorespiratory fitness, and agility contributed the most to the data variation so that they can be used as profiling variables. This profiling method accurately identified the relevant variables to reinforce exercise recommendations in a low physical performance and overweight majors.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23004896
003      
CZ-PrNML
005      
20230425171800.0
007      
ta
008      
230418s2022 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/ijerph20010146 $2 doi
035    __
$a (PubMed)36612474
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Bonilla, Diego A $u Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá 110311, Colombia $u Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia $u Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia $u Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain $1 https://orcid.org/0000000226341220
245    10
$a Profiling Physical Fitness of Physical Education Majors Using Unsupervised Machine Learning / $c DA. Bonilla, IA. Sánchez-Rojas, D. Mendoza-Romero, Y. Moreno, J. Kočí, LM. Gómez-Miranda, D. Rojas-Valverde, JL. Petro, RB. Kreider
520    9_
$a The academic curriculum has shown to promote sedentary behavior in college students. This study aimed to profile the physical fitness of physical education majors using unsupervised machine learning and to identify the differences between sexes, academic years, socioeconomic strata, and the generated profiles. A total of 542 healthy and physically active students (445 males, 97 females; 19.8 [2.2] years; 66.0 [10.3] kg; 169.5 [7.8] cm) participated in this cross-sectional study. Their indirect VO2max (Cooper and Shuttle-Run 20 m tests), lower-limb power (horizontal jump), sprint (30 m), agility (shuttle run), and flexibility (sit-and-reach) were assessed. The participants were profiled using clustering algorithms after setting the optimal number of clusters through an internal validation using R packages. Non-parametric tests were used to identify the differences (p < 0.05). The higher percentage of the population were freshmen (51.4%) and middle-income (64.0%) students. Seniors and juniors showed a better physical fitness than first-year students. No significant differences were found between their socioeconomic strata (p > 0.05). Two profiles were identified using hierarchical clustering (Cluster 1 = 318 vs. Cluster 2 = 224). The matching analysis revealed that physical fitness explained the variation in the data, with Cluster 2 as a sex-independent and more physically fit group. All variables differed significantly between the sexes (except the body mass index [p = 0.218]) and the generated profiles (except stature [p = 0.559] and flexibility [p = 0.115]). A multidimensional analysis showed that the body mass, cardiorespiratory fitness, and agility contributed the most to the data variation so that they can be used as profiling variables. This profiling method accurately identified the relevant variables to reinforce exercise recommendations in a low physical performance and overweight majors.
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a průřezové studie $7 D003430
650    12
$a strojové učení bez učitele $7 D000069558
650    12
$a tělesná výchova $7 D010806
650    _2
$a tělesná výkonnost $7 D010809
650    _2
$a cvičení $7 D015444
650    _2
$a index tělesné hmotnosti $7 D015992
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Sánchez-Rojas, Isabel A $u Grupo de Investigación Ciencias Aplicadas al Ejercicio, Deporte y Salud-GICAEDS, Universidad Santo Tomás, Bogotá 205070, Colombia $1 https://orcid.org/0000000255450127
700    1_
$a Mendoza-Romero, Darío $u Grupo de Investigación Ciencias Aplicadas al Ejercicio, Deporte y Salud-GICAEDS, Universidad Santo Tomás, Bogotá 205070, Colombia $1 https://orcid.org/0000000289731541
700    1_
$a Moreno, Yurany $u Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá 110311, Colombia
700    1_
$a Kočí, Jana $u Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá 110311, Colombia $u Department of Education, Faculty of Education, Charles University, 11636 Prague, Czech Republic $1 https://orcid.org/0000000347145285
700    1_
$a Gómez-Miranda, Luis M $u Sports Faculty, Autonomous University of Baja California, Tijuana 22390, Mexico
700    1_
$a Rojas-Valverde, Daniel $u Núcleo de Estudios para el Alto Rendimiento y la Salud (NARS-CIDISAD), Escuela Ciencia del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia 863000, Costa Rica $u Clínica de Lesiones Deportivas (Rehab&Readapt), Escuela Ciencia del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia 863000, Costa Rica
700    1_
$a Petro, Jorge L $u Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá 110311, Colombia $u Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia $1 https://orcid.org/0000000156781000
700    1_
$a Kreider, Richard B $u Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA $1 https://orcid.org/0000000239061658
773    0_
$w MED00176090 $t International journal of environmental research and public health $x 1660-4601 $g Roč. 20, č. 1 (2022)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36612474 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230418 $b ABA008
991    __
$a 20230425171756 $b ABA008
999    __
$a ok $b bmc $g 1925155 $s 1191105
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2022 $b 20 $c 1 $e 20221222 $i 1660-4601 $m International journal of environmental research and public health $n Int. j. environ. res. public health $x MED00176090
LZP    __
$a Pubmed-20230418

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...