• Je něco špatně v tomto záznamu ?

Identification, characterization, and engineering of glycosylation in thrombolytics

M. Toul, V. Slonkova, J. Mican, A. Urminsky, M. Tomkova, E. Sedlak, D. Bednar, J. Damborsky, L. Hernychova, Z. Prokop

. 2023 ; 66 (-) : 108174. [pub] 20230512

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc23010800

Cardiovascular diseases, such as myocardial infarction, ischemic stroke, and pulmonary embolism, are the most common causes of disability and death worldwide. Blood clot hydrolysis by thrombolytic enzymes and thrombectomy are key clinical interventions. The most widely used thrombolytic enzyme is alteplase, which has been used in clinical practice since 1986. Another clinically used thrombolytic protein is tenecteplase, which has modified epitopes and engineered glycosylation sites, suggesting that carbohydrate modification in thrombolytic enzymes is a viable strategy for their improvement. This comprehensive review summarizes current knowledge on computational and experimental identification of glycosylation sites and glycan identity, together with methods used for their reengineering. Practical examples from previous studies focus on modification of glycosylations in thrombolytics, e.g., alteplase, tenecteplase, reteplase, urokinase, saruplase, and desmoteplase. Collected clinical data on these glycoproteins demonstrate the great potential of this engineering strategy. Outstanding combinatorics originating from multiple glycosylation sites and the vast variety of covalently attached glycan species can be addressed by directed evolution or rational design. Directed evolution pipelines would benefit from more efficient cell-free expression and high-throughput screening assays, while rational design must employ structure prediction by machine learning and in silico characterization by supercomputing. Perspectives on challenges and opportunities for improvement of thrombolytic enzymes by engineering and evolution of protein glycosylation are provided.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23010800
003      
CZ-PrNML
005      
20230801132630.0
007      
ta
008      
230718s2023 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.biotechadv.2023.108174 $2 doi
035    __
$a (PubMed)37182613
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Toul, Martin $u Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
245    10
$a Identification, characterization, and engineering of glycosylation in thrombolytics / $c M. Toul, V. Slonkova, J. Mican, A. Urminsky, M. Tomkova, E. Sedlak, D. Bednar, J. Damborsky, L. Hernychova, Z. Prokop
520    9_
$a Cardiovascular diseases, such as myocardial infarction, ischemic stroke, and pulmonary embolism, are the most common causes of disability and death worldwide. Blood clot hydrolysis by thrombolytic enzymes and thrombectomy are key clinical interventions. The most widely used thrombolytic enzyme is alteplase, which has been used in clinical practice since 1986. Another clinically used thrombolytic protein is tenecteplase, which has modified epitopes and engineered glycosylation sites, suggesting that carbohydrate modification in thrombolytic enzymes is a viable strategy for their improvement. This comprehensive review summarizes current knowledge on computational and experimental identification of glycosylation sites and glycan identity, together with methods used for their reengineering. Practical examples from previous studies focus on modification of glycosylations in thrombolytics, e.g., alteplase, tenecteplase, reteplase, urokinase, saruplase, and desmoteplase. Collected clinical data on these glycoproteins demonstrate the great potential of this engineering strategy. Outstanding combinatorics originating from multiple glycosylation sites and the vast variety of covalently attached glycan species can be addressed by directed evolution or rational design. Directed evolution pipelines would benefit from more efficient cell-free expression and high-throughput screening assays, while rational design must employ structure prediction by machine learning and in silico characterization by supercomputing. Perspectives on challenges and opportunities for improvement of thrombolytic enzymes by engineering and evolution of protein glycosylation are provided.
650    _2
$a lidé $7 D006801
650    12
$a tkáňový aktivátor plazminogenu $7 D010959
650    _2
$a tenektepláza $7 D000077785
650    _2
$a glykosylace $7 D006031
650    _2
$a fibrinolytika $x terapeutické užití $7 D005343
650    12
$a infarkt myokardu $x farmakoterapie $7 D009203
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Slonkova, Veronika $u Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
700    1_
$a Mican, Jan $u Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
700    1_
$a Urminsky, Adam $u Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
700    1_
$a Tomkova, Maria $u Center for Interdisciplinary Biosciences, P. J. Safarik University in Kosice, Jesenna 5, 04154 Kosice, Slovakia
700    1_
$a Sedlak, Erik $u Center for Interdisciplinary Biosciences, P. J. Safarik University in Kosice, Jesenna 5, 04154 Kosice, Slovakia
700    1_
$a Bednar, David $u Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
700    1_
$a Damborsky, Jiri $u Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
700    1_
$a Hernychova, Lenka $u Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic. Electronic address: lenka.hernychova@mou.cz
700    1_
$a Prokop, Zbynek $u Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic. Electronic address: zbynek@chemi.muni.cz
773    0_
$w MED00000793 $t Biotechnology advances $x 1873-1899 $g Roč. 66, č. - (2023), s. 108174
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37182613 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230718 $b ABA008
991    __
$a 20230801132627 $b ABA008
999    __
$a ok $b bmc $g 1963306 $s 1197065
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 66 $c - $d 108174 $e 20230512 $i 1873-1899 $m Biotechnology advances $n Biotechnol Adv $x MED00000793
LZP    __
$a Pubmed-20230718

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...