-
Je něco špatně v tomto záznamu ?
Improving adeno-associated viral (AAV) vector-mediated transgene expression in retinal ganglion cells: comparison of five promoters
B. Nieuwenhuis, E. Laperrousaz, JR. Tribble, J. Verhaagen, JW. Fawcett, KR. Martin, PA. Williams, A. Osborne
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/R004463/1
Medical Research Council - United Kingdom
MR/V002694/1
Medical Research Council - United Kingdom
MR/R004544/1
Medical Research Council - United Kingdom
NLK
ProQuest Central
od 2000-01-01 do Před 1 rokem
Open Access Digital Library
od 1997-01-01
Health & Medicine (ProQuest)
od 2000-01-01 do Před 1 rokem
Public Health Database (ProQuest)
od 2000-01-01 do Před 1 rokem
- MeSH
- aktiny genetika metabolismus MeSH
- cytomegalovirové infekce * genetika metabolismus MeSH
- Dependovirus genetika metabolismus MeSH
- genetické vektory genetika MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- Parvovirinae * genetika MeSH
- retinální gangliové buňky metabolismus MeSH
- transdukce genetická MeSH
- transgeny MeSH
- zelené fluorescenční proteiny genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recombinant adeno-associated viral vectors (AAVs) are an effective system for gene transfer. AAV serotype 2 (AAV2) is commonly used to deliver transgenes to retinal ganglion cells (RGCs) via intravitreal injection. The AAV serotype however is not the only factor contributing to the effectiveness of gene therapies. Promoters influence the strength and cell-selectivity of transgene expression. This study compares five promoters designed to maximise AAV2 cargo space for gene delivery: chicken β-actin (CBA), cytomegalovirus (CMV), short CMV early enhancer/chicken β-actin/short β-globulin intron (sCAG), mouse phosphoglycerate kinase (PGK), and human synapsin (SYN). The promoters driving enhanced green fluorescent protein (eGFP) were examined in adult C57BL/6J mice eyes and tissues of the visual system. eGFP expression was strongest in the retina, optic nerves and brain when driven by the sCAG and SYN promoters. CBA, CMV, and PGK had moderate expression by comparison. The SYN promoter had almost exclusive transgene expression in RGCs. The PGK promoter had predominant expression in both RGCs and AII amacrine cells. The ubiquitous CBA, CMV, and sCAG promoters expressed eGFP in a variety of cell types across multiple retinal layers including Müller glia and astrocytes. We also found that these promoters could transduce human retina ex vivo, although expression was predominantly in glial cells due to low RGC viability. Taken together, this promoter comparison study contributes to optimising AAV-mediated transduction in the retina, and could be valuable for research in ocular disorders, particularly those with large or complex genetic cargos.
Cambridge Institute for Medical Research University of Cambridge Cambridge CB2 0XY UK
Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne VIC Australia
Centre of Reconstructive Neuroscience Institute of Experimental Medicine Prague Czech Republic
Ikarovec Ltd The Norwich Research Park Innovation Centre Norwich UK
Ophthalmology Department of Surgery University of Melbourne Melbourne VIC Australia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23011310
- 003
- CZ-PrNML
- 005
- 20230801132943.0
- 007
- ta
- 008
- 230718s2023 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41434-022-00380-z $2 doi
- 035 __
- $a (PubMed)36635457
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Nieuwenhuis, Bart $u John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. bn246@cam.ac.uk $u Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK. bn246@cam.ac.uk $1 https://orcid.org/0000000220652271
- 245 10
- $a Improving adeno-associated viral (AAV) vector-mediated transgene expression in retinal ganglion cells: comparison of five promoters / $c B. Nieuwenhuis, E. Laperrousaz, JR. Tribble, J. Verhaagen, JW. Fawcett, KR. Martin, PA. Williams, A. Osborne
- 520 9_
- $a Recombinant adeno-associated viral vectors (AAVs) are an effective system for gene transfer. AAV serotype 2 (AAV2) is commonly used to deliver transgenes to retinal ganglion cells (RGCs) via intravitreal injection. The AAV serotype however is not the only factor contributing to the effectiveness of gene therapies. Promoters influence the strength and cell-selectivity of transgene expression. This study compares five promoters designed to maximise AAV2 cargo space for gene delivery: chicken β-actin (CBA), cytomegalovirus (CMV), short CMV early enhancer/chicken β-actin/short β-globulin intron (sCAG), mouse phosphoglycerate kinase (PGK), and human synapsin (SYN). The promoters driving enhanced green fluorescent protein (eGFP) were examined in adult C57BL/6J mice eyes and tissues of the visual system. eGFP expression was strongest in the retina, optic nerves and brain when driven by the sCAG and SYN promoters. CBA, CMV, and PGK had moderate expression by comparison. The SYN promoter had almost exclusive transgene expression in RGCs. The PGK promoter had predominant expression in both RGCs and AII amacrine cells. The ubiquitous CBA, CMV, and sCAG promoters expressed eGFP in a variety of cell types across multiple retinal layers including Müller glia and astrocytes. We also found that these promoters could transduce human retina ex vivo, although expression was predominantly in glial cells due to low RGC viability. Taken together, this promoter comparison study contributes to optimising AAV-mediated transduction in the retina, and could be valuable for research in ocular disorders, particularly those with large or complex genetic cargos.
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a retinální gangliové buňky $x metabolismus $7 D012165
- 650 _2
- $a aktiny $x genetika $x metabolismus $7 D000199
- 650 _2
- $a transdukce genetická $7 D014161
- 650 _2
- $a myši inbrední C57BL $7 D008810
- 650 _2
- $a transgeny $7 D019076
- 650 _2
- $a Dependovirus $x genetika $x metabolismus $7 D000229
- 650 12
- $a Parvovirinae $x genetika $7 D019219
- 650 _2
- $a zelené fluorescenční proteiny $x genetika $7 D049452
- 650 12
- $a cytomegalovirové infekce $x genetika $x metabolismus $7 D003586
- 650 _2
- $a genetické vektory $x genetika $7 D005822
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Laperrousaz, Elise $u John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK $1 https://orcid.org/0000000283428533
- 700 1_
- $a Tribble, James R $u Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden $1 https://orcid.org/0000000183017358
- 700 1_
- $a Verhaagen, Joost $u Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands $u Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- 700 1_
- $a Fawcett, James W $u John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK $u Centre of Reconstructive Neuroscience, Institute of Experimental Medicine, Prague, Czech Republic $1 https://orcid.org/0000000279904568 $7 mub2018979500
- 700 1_
- $a Martin, Keith R $u John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK $u Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia $u Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
- 700 1_
- $a Williams, Pete A $u Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden $1 https://orcid.org/0000000161948397
- 700 1_
- $a Osborne, Andrew $u John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. ao@ikarovec.com $u Ikarovec Ltd, The Norwich Research Park Innovation Centre, Norwich, UK. ao@ikarovec.com $1 https://orcid.org/0000000256492337
- 773 0_
- $w MED00001890 $t Gene therapy $x 1476-5462 $g Roč. 30, č. 6 (2023), s. 503-519
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36635457 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230718 $b ABA008
- 991 __
- $a 20230801132940 $b ABA008
- 999 __
- $a ok $b bmc $g 1963611 $s 1197575
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 30 $c 6 $d 503-519 $e 20230113 $i 1476-5462 $m Gene therapy $n Gene Ther $x MED00001890
- GRA __
- $a MR/R004463/1 $p Medical Research Council $2 United Kingdom
- GRA __
- $a MR/V002694/1 $p Medical Research Council $2 United Kingdom
- GRA __
- $a MR/R004544/1 $p Medical Research Council $2 United Kingdom
- LZP __
- $a Pubmed-20230718