Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

HPC+ in the medical field: Overview and current examples

M. Koch, C. Arlandini, G. Antonopoulos, A. Baretta, P. Beaujean, GJ. Bex, ME. Biancolini, S. Celi, E. Costa, L. Drescher, V. Eleftheriadis, NA. Fadel, A. Fink, F. Galbiati, I. Hatzakis, G. Hompis, N. Lewandowski, A. Memmolo, C. Mensch, D. Obrist,...

. 2023 ; 31 (4) : 1509-1523. [pub] -

Language English Country Netherlands

Document type Journal Article, Review

BACKGROUND: To say data is revolutionising the medical sector would be a vast understatement. The amount of medical data available today is unprecedented and has the potential to enable to date unseen forms of healthcare. To process this huge amount of data, an equally huge amount of computing power is required, which cannot be provided by regular desktop computers. These areas can be (and already are) supported by High-Performance-Computing (HPC), High-Performance Data Analytics (HPDA), and AI (together "HPC+"). OBJECTIVE: This overview article aims to show state-of-the-art examples of studies supported by the National Competence Centres (NCCs) in HPC+ within the EuroCC project, employing HPC, HPDA and AI for medical applications. METHOD: The included studies on different applications of HPC in the medical sector were sourced from the National Competence Centres in HPC and compiled into an overview article. Methods include the application of HPC+ for medical image processing, high-performance medical and pharmaceutical data analytics, an application for pediatric dosimetry, and a cloud-based HPC platform to support systemic pulmonary shunting procedures. RESULTS: This article showcases state-of-the-art applications and large-scale data analytics in the medical sector employing HPC+ within surgery, medical image processing in diagnostics, nutritional support of patients in hospitals, treating congenital heart diseases in children, and within basic research. CONCLUSION: HPC+ support scientific fields from research to industrial applications in the medical area, enabling researchers to run faster and more complex calculations, simulations and data analyses for the direct benefit of patients, doctors, clinicians and as an accelerator for medical research.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23017112
003      
CZ-PrNML
005      
20231026105408.0
007      
ta
008      
231013s2023 ne f 000 0|eng||
009      
AR
024    7_
$a 10.3233/THC-229015 $2 doi
035    __
$a (PubMed)36641699
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Koch, Miriam $u High-Performance Computing Center Stuttgart (HLRS), Stuttgart, Germany
245    10
$a HPC+ in the medical field: Overview and current examples / $c M. Koch, C. Arlandini, G. Antonopoulos, A. Baretta, P. Beaujean, GJ. Bex, ME. Biancolini, S. Celi, E. Costa, L. Drescher, V. Eleftheriadis, NA. Fadel, A. Fink, F. Galbiati, I. Hatzakis, G. Hompis, N. Lewandowski, A. Memmolo, C. Mensch, D. Obrist, V. Paneta, P. Papadimitroulas, K. Petropoulos, S. Porziani, G. Savvidis, K. Sethia, P. Strakos, P. Svobodova, E. Vignali
520    9_
$a BACKGROUND: To say data is revolutionising the medical sector would be a vast understatement. The amount of medical data available today is unprecedented and has the potential to enable to date unseen forms of healthcare. To process this huge amount of data, an equally huge amount of computing power is required, which cannot be provided by regular desktop computers. These areas can be (and already are) supported by High-Performance-Computing (HPC), High-Performance Data Analytics (HPDA), and AI (together "HPC+"). OBJECTIVE: This overview article aims to show state-of-the-art examples of studies supported by the National Competence Centres (NCCs) in HPC+ within the EuroCC project, employing HPC, HPDA and AI for medical applications. METHOD: The included studies on different applications of HPC in the medical sector were sourced from the National Competence Centres in HPC and compiled into an overview article. Methods include the application of HPC+ for medical image processing, high-performance medical and pharmaceutical data analytics, an application for pediatric dosimetry, and a cloud-based HPC platform to support systemic pulmonary shunting procedures. RESULTS: This article showcases state-of-the-art applications and large-scale data analytics in the medical sector employing HPC+ within surgery, medical image processing in diagnostics, nutritional support of patients in hospitals, treating congenital heart diseases in children, and within basic research. CONCLUSION: HPC+ support scientific fields from research to industrial applications in the medical area, enabling researchers to run faster and more complex calculations, simulations and data analyses for the direct benefit of patients, doctors, clinicians and as an accelerator for medical research.
650    _2
$a dítě $7 D002648
650    _2
$a lidé $7 D006801
650    12
$a počítačové metodologie $7 D003205
650    _2
$a počítačové zpracování obrazu $7 D007091
650    12
$a software $7 D012984
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Arlandini, Claudio $u CINECA, Casalecchio di Reno, Italy
700    1_
$a Antonopoulos, Gregory $u iKnowHow, Athens, Greece
700    1_
$a Baretta, Alessia $u InSilicoTrials, Trieste, Italy
700    1_
$a Beaujean, Pierre $u Laboratory of Theoretical Chemistry, Namur Institute of Structured Matter, University of Namur, Namur, Belgium
700    1_
$a Bex, Geert Jan $u Data Science Institute, Hasselt University, Hasselt, Belgium
700    1_
$a Biancolini, Marco Evangelos $u RBF Morph, Rome, Italy
700    1_
$a Celi, Simona $u BioCardioLab, Fondazione Toscana G Monasterio, Massa, Italy
700    1_
$a Costa, Emiliano $u RINA, Rome, Italy
700    1_
$a Drescher, Lukas $u Swiss National Supercomputing Centre (CSCS), Lugano, Switzerland
700    1_
$a Eleftheriadis, Vasileios $u BIOEMTECH, Athens, Greece
700    1_
$a Fadel, Nur A $u Swiss National Supercomputing Centre (CSCS), Lugano, Switzerland
700    1_
$a Fink, Andreas $u Swiss National Supercomputing Centre (CSCS), Lugano, Switzerland
700    1_
$a Galbiati, Federica $u RINA, Rome, Italy
700    1_
$a Hatzakis, Ilias $u GRNET, Athens, Greece
700    1_
$a Hompis, Georgios $u iKnowHow, Athens, Greece
700    1_
$a Lewandowski, Natalie $u High-Performance Computing Center Stuttgart (HLRS), Stuttgart, Germany
700    1_
$a Memmolo, Antonio $u CINECA, Casalecchio di Reno, Italy
700    1_
$a Mensch, Carl $u Department of Mathematics, Faculty of Science, University of Antwerp, Antwerp, Belgium
700    1_
$a Obrist, Dominik $u University of Bern, Bern, Switzerland
700    1_
$a Paneta, Valentina $u BIOEMTECH, Athens, Greece
700    1_
$a Papadimitroulas, Panagiotis $u BIOEMTECH, Athens, Greece
700    1_
$a Petropoulos, Konstantinos $u iKnowHow, Athens, Greece
700    1_
$a Porziani, Stefano $u RBF Morph, Rome, Italy
700    1_
$a Savvidis, Georgios $u BIOEMTECH, Athens, Greece
700    1_
$a Sethia, Khyati $u IT4Innovations, VSB - Technical University of Ostrava, Ostrava-Poruba, Czech Republic
700    1_
$a Strakos, Petr $u IT4Innovations, VSB - Technical University of Ostrava, Ostrava-Poruba, Czech Republic
700    1_
$a Svobodova, Petra $u IT4Innovations, VSB - Technical University of Ostrava, Ostrava-Poruba, Czech Republic
700    1_
$a Vignali, Emanuele $u BioCardioLab, Fondazione Toscana G Monasterio, Massa, Italy
773    0_
$w MED00007376 $t Technology and health care : official journal of the European Society for Engineering and Medicine $x 1878-7401 $g Roč. 31, č. 4 (2023), s. 1509-1523
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36641699 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20231013 $b ABA008
991    __
$a 20231026105403 $b ABA008
999    __
$a ok $b bmc $g 2000570 $s 1203474
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 31 $c 4 $d 1509-1523 $e - $i 1878-7401 $m Technology anad health care $n Technol Health Care $x MED00007376
LZP    __
$a Pubmed-20231013

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...