HPC+ in the medical field: Overview and current examples
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
36641699
PubMed Central
PMC10357138
DOI
10.3233/thc-229015
PII: THC229015
Knihovny.cz E-zdroje
- Klíčová slova
- AI (artificial intelligence), Computer simulation, computational modeling, data analysis, diagnosis, medicine, therapeutics,
- MeSH
- dítě MeSH
- lidé MeSH
- počítačové metodologie * MeSH
- počítačové zpracování obrazu MeSH
- software * MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: To say data is revolutionising the medical sector would be a vast understatement. The amount of medical data available today is unprecedented and has the potential to enable to date unseen forms of healthcare. To process this huge amount of data, an equally huge amount of computing power is required, which cannot be provided by regular desktop computers. These areas can be (and already are) supported by High-Performance-Computing (HPC), High-Performance Data Analytics (HPDA), and AI (together "HPC+"). OBJECTIVE: This overview article aims to show state-of-the-art examples of studies supported by the National Competence Centres (NCCs) in HPC+ within the EuroCC project, employing HPC, HPDA and AI for medical applications. METHOD: The included studies on different applications of HPC in the medical sector were sourced from the National Competence Centres in HPC and compiled into an overview article. Methods include the application of HPC+ for medical image processing, high-performance medical and pharmaceutical data analytics, an application for pediatric dosimetry, and a cloud-based HPC platform to support systemic pulmonary shunting procedures. RESULTS: This article showcases state-of-the-art applications and large-scale data analytics in the medical sector employing HPC+ within surgery, medical image processing in diagnostics, nutritional support of patients in hospitals, treating congenital heart diseases in children, and within basic research. CONCLUSION: HPC+ support scientific fields from research to industrial applications in the medical area, enabling researchers to run faster and more complex calculations, simulations and data analyses for the direct benefit of patients, doctors, clinicians and as an accelerator for medical research.
BioCardioLab Fondazione Toscana G Monasterio Massa Italy
CINECA Casalecchio di Reno Italy
Data Science Institute Hasselt University Hasselt Belgium
Department of Mathematics Faculty of Science University of Antwerp Antwerp Belgium
High Performance Computing Center Stuttgart Stuttgart Germany
IT4Innovations VSB Technical University of Ostrava Ostrava Poruba Czech Republic
Zobrazit více v PubMed
https://www2.deloitte.com/ch/en/pages/life-sciences-and-healthcare/articles/predicting-the-future-of-healthcare-and-life-sciences-in-2025.html.
Fedorov A, et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012. Nov; 30(9): 1323-41. PMID: 22770690. PMCID: PMC3466397. PubMed PMC
NVIDIA Clara Imaging. https://developer.nvidia.com/clara-medical-imaging (2020).
NIfTI: Neuroimaging Informatics Technology Initiative. https://nifti.nimh.nih.gov/ (2021).
VIPUN Medical, 2022, accessed 20/10/2022, https://www.vipunmedical.com/#about.
Kim H, Stotts NA, Froelicher ES, Engler MM, Porter C. Why patients in critical care do not receive adequate enteral nutrition? A review of the literature. Journal of Critical Care. 2012; 27(6): 702-713. doi: 10.1016/j.jcrc.2012.07.019. PubMed DOI
Saunders J, Smith T. Malnutrition: causes and consequences. Clinical Medicine. 2010; 10(6): 624-627. doi: 10.7861/clinmedicine.10-6-624. PubMed DOI PMC
Goelen N, Hoon J, Morales JF, Varon C, van Huffel S, Augustijns P, Mols R, Herbots M, Verbeke K, Vanuytsel T, Tack J, Janssen P. Codeine delays gastric emptying through inhibition of gastric motility as assessed with a novel diagnostic intragastric balloon catheter. Neurogastroenterology & Motility. 2020; 32(1). doi: 10.1111/nmo.13733. PubMed DOI
Phillips RS, Iradukunda EC, Hughes T, Bowen JP. Modulation of enzyme activity in the kynurenine pathway by kynurenine monooxygenase inhibition. Frontiers in Molecular Biosciences. 2019; 6(FEB). doi: 10.3389/fmolb.2019.00003. PubMed DOI PMC
Vlaams Supercomputing Centrum (VSC), https://vscentrum.be/.
Mirgaux M, Leherte L, Wouters J. Influence of the presence of the heme cofactor on the JK-loop structure in indoleamine 2,3-dioxygenase 1. Acta Crystallographica Section D Structural Biology. 2020; 76(12): 1211-1221. doi: 10.1107/S2059798320013510. PubMed DOI
Consortium des Équipements de Calcul Intensif (CECI), https://www.ceci-hpc.be/.
National Competence Center Belgium (NCC Belgium), EuroCC, https://www.enccb.be/.
Zolfaghari H, Obrist D. Absolute instability of impinging leading edge vortices in a submodel of a bileaflet mechanical heart valve. Phys. Rev. fluids, 2019; 4(12): 123901.
Henniger R, Obrist D, Kleiser L. High-order accurate solution of the incompressible Navier-Stokes equations on massively parallel computers. J. Comput. Phys. 2010; 229(10). doi: 10.1016/j.jcp.2010.01.015. DOI
Zolfaghari H, Becsek B, Nestola MGC, Sawyer WB, Krause R, Obrist D. High-order accurate simulation of incompressible turbulent flows on many parallel GPUs of a hybrid-node supercomputer. Comput. Phys. Commun. 2019; 244. doi: 10.1016/j.cpc.2019.06.012. DOI
Zolfaghari H, Obrist D. A high-throughput hybrid task and data parallel Poisson solver for large-scale simulations of incompressible turbulent flows on distributed GPUs. J. Comput. Phys. 2021; 437: 110329.
Nestola MGC, et al. An immersed boundary method for fluid-structure interaction based on variational transfer. J. Comput. Phys. 2019; 398. doi: 10.1016/j.jcp.2019.108884. DOI
Peskin CS. The immersed boundary method. Acta Numer. 2002; 11: 479-517.
Krause R, Zulian P. A parallel approach to the variational transfer of discrete fields between arbitrarily distributed unstructured finite element meshes. SIAM Journal on Scientific Computing. 2016; 38(3): C307-C333.
Becsek B, Pietrasanta L, Obrist D. Turbulent Systolic Flow Downstream of a Bioprosthetic Aortic Valve: Velocity Spectra, Wall Shear Stresses, and Turbulent Dissipation Rates. Front. Physiol. 2020; 11. doi: 10.3389/fphys.2020.577188. PubMed DOI PMC
Corso P, Jahren SE, Vennemann B, Obrist D. Leaflet fluttering and turbulent systolic blood flow after bioprosthetic heart valves, CMBBE – International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, 7–9 September 2021, https://youtu.be/ug_-I_94opc, 2021.
Zolfaghari H, Kerswell RR, Obrist D, Schmid PJ. Sensitivity and downstream influence of the impinging leading-edge vortex instability in a bileaflet mechanical heart valve. J. Fluid Mech. 2022; 936.
Vishnevskiy V, Walheim J, Kozerke S. Deep variational network for rapid 4D flow MRI reconstruction. Nature Machine Intelligence. 2020; 2(4): 228-235.
De Marinis D, Obrist D. Data assimilation by stochastic ensemble kalman filtering to enhance turbulent cardiovascular flow data from under-resolved observations. Front. Cardiovasc. Med. 2021; 8: 742110. PubMed PMC
You S, Tezcan KC, Chen X, Konukoglu E. Unsupervised lesion detection via image restoration with a normative prior. In International Conference on Medical Imaging with Deep Learning. PMLR. 2019. May. pp. 540-556. PubMed
Papadimitroulas P, et al. A Review on Personalized Pediatric Dosimetry Applications Using Advanced Computational Tools IEEE trans. Radiat. Plasma Med. Sci. 2019; 3(6): 607-620.
Sarrut D, et al. The OpenGATE ecosystem for Monte Carlo simulation in medical physics. Phys Med Biol. 2022; 67(18): 184001. PubMed PMC
Segars WP, et al. The development of a population of 4D pediatric XCAT phantoms for imaging research and optimization Med. Phys. 2015; 42(8): 4719-26. PubMed PMC
Sammut C, Webb GI (eds). Encyclopedia of Machine Learning Boston, MA Springer Leave-One-Out Cross-Validation, 2011.
Papadimitroulas P, et al. A personalized, Monte Carlo-based method for internal dosimetric evaluation of radiopharmaceuticals in children Med. Phys. 2018; 45: 3939-3949. PubMed
Bentham JR, Zava NK, Harrison WJ, Shauq A, Kalantre A, Derrick G, et al. Duct stenting versus modified Blalock-Taussig shunt in neonates with duct-dependent pulmonary blood flow: Associations with clinical outcomes in a multicenter national study. Circulation. 2018; 137(6): 581-8. PubMed
Cloud-based HPC platform to support systemic-pulmonary shunting procedures; Available from: https://www.ff4eurohpc.eu/en/success-stories/2022111921555173/cloudbased_hpc_platform_to_support_systemicpulmonary_shunting_procedures.
Kardampiki E, Vignali E, Haxhiademi D, Federici D, Ferrante E, Porziani S, et al. The hemodynamic effect of modified blalock-taussig shunt mor-phologies: A computational analysis based on reduced order modeling. Electronics. 2022; 11(13): 1930.
EuroCC, https://www.eurocc-access.eu.
FF4EuroHPC, https://www.ff4eurohpc.eu.
Medical Solution Center – CASE4Med, https://case4med.de/.
Computational Immediate Response Center for Emergencies, CIRCE, https://www.hlrs.de/projects/detail/circe.
https://www.hlrs.de/news/detail/hlrs-and-bib-win-hpc-innovation-award-for-pandemic-monitoring-tool.