-
Je něco špatně v tomto záznamu ?
Proteomics and mathematical modeling of longitudinal CSF differentiates fast versus slow ALS progression
L. Vu, K. Garcia-Mansfield, A. Pompeiano, J. An, V. David-Dirgo, R. Sharma, V. Venugopal, H. Halait, G. Marcucci, YH. Kuo, L. Uechi, RC. Rockne, P. Pirrotte, R. Bowser
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R56 NS061867
NINDS NIH HHS - United States
R01 NS061867
NINDS NIH HHS - United States
P30 CA033572
NCI NIH HHS - United States
NLK
Directory of Open Access Journals
od 2014
Free Medical Journals
od 2014 do Před 2 roky
PubMed Central
od 2014
Europe PubMed Central
od 2014
ProQuest Central
od 2014-01-01
Open Access Digital Library
od 2014-01-01
Open Access Digital Library
od 2014-01-01
Health & Medicine (ProQuest)
od 2014-01-01
Psychology Database (ProQuest)
od 2014-01-01
Wiley-Blackwell Open Access Titles
od 2014
PubMed
37646115
DOI
10.1002/acn3.51890
Knihovny.cz E-zdroje
- MeSH
- amyotrofická laterální skleróza * MeSH
- biologické markery mozkomíšní mok MeSH
- lidé MeSH
- plazmatické proteiny vázající retinol MeSH
- progrese nemoci MeSH
- proteom metabolismus MeSH
- proteomika metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease with a complex etiology that lacks biomarkers predicting disease progression. The objective of this study was to use longitudinal cerebrospinal fluid (CSF) samples to identify biomarkers that distinguish fast progression (FP) from slow progression (SP) and assess their temporal response. METHODS: We utilized mass spectrometry (MS)-based proteomics to identify candidate biomarkers using longitudinal CSF from a discovery cohort of SP and FP ALS patients. Immunoassays were used to quantify and validate levels of the top biomarkers. A state-transition mathematical model was created using the longitudinal MS data that also predicted FP versus SP. RESULTS: We identified a total of 1148 proteins in the CSF of all ALS patients. Pathway analysis determined enrichment of pathways related to complement and coagulation cascades in FPs and synaptogenesis and glucose metabolism in SPs. Longitudinal analysis revealed a panel of 59 candidate markers that could segregate FP and SP ALS. Based on multivariate analysis, we identified three biomarkers (F12, RBP4, and SERPINA4) as top candidates that segregate ALS based on rate of disease progression. These proteins were validated in the discovery and a separate validation cohort. Our state-transition model determined that the overall variance of the proteome over time was predictive of the disease progression rate. INTERPRETATION: We identified pathways and protein biomarkers that distinguish rate of ALS disease progression. A mathematical model of the CSF proteome determined that the change in entropy of the proteome over time was predictive of FP versus SP.
Cancer and Cell Biology Division Translational Genomics Research Institute Phoenix Arizona 85004 USA
Department of Translational Neuroscience Barrow Neurological Institute Phoenix Arizona 85013 USA
Integrated Mass Spectrometry City of Hope Comprehensive Cancer Center Duarte California 19050 USA
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24000871
- 003
- CZ-PrNML
- 005
- 20240213093430.0
- 007
- ta
- 008
- 240109s2023 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/acn3.51890 $2 doi
- 035 __
- $a (PubMed)37646115
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Vu, Lucas $u Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, Arizona, 85013, USA
- 245 10
- $a Proteomics and mathematical modeling of longitudinal CSF differentiates fast versus slow ALS progression / $c L. Vu, K. Garcia-Mansfield, A. Pompeiano, J. An, V. David-Dirgo, R. Sharma, V. Venugopal, H. Halait, G. Marcucci, YH. Kuo, L. Uechi, RC. Rockne, P. Pirrotte, R. Bowser
- 520 9_
- $a OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease with a complex etiology that lacks biomarkers predicting disease progression. The objective of this study was to use longitudinal cerebrospinal fluid (CSF) samples to identify biomarkers that distinguish fast progression (FP) from slow progression (SP) and assess their temporal response. METHODS: We utilized mass spectrometry (MS)-based proteomics to identify candidate biomarkers using longitudinal CSF from a discovery cohort of SP and FP ALS patients. Immunoassays were used to quantify and validate levels of the top biomarkers. A state-transition mathematical model was created using the longitudinal MS data that also predicted FP versus SP. RESULTS: We identified a total of 1148 proteins in the CSF of all ALS patients. Pathway analysis determined enrichment of pathways related to complement and coagulation cascades in FPs and synaptogenesis and glucose metabolism in SPs. Longitudinal analysis revealed a panel of 59 candidate markers that could segregate FP and SP ALS. Based on multivariate analysis, we identified three biomarkers (F12, RBP4, and SERPINA4) as top candidates that segregate ALS based on rate of disease progression. These proteins were validated in the discovery and a separate validation cohort. Our state-transition model determined that the overall variance of the proteome over time was predictive of the disease progression rate. INTERPRETATION: We identified pathways and protein biomarkers that distinguish rate of ALS disease progression. A mathematical model of the CSF proteome determined that the change in entropy of the proteome over time was predictive of FP versus SP.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a amyotrofická laterální skleróza $7 D000690
- 650 _2
- $a proteom $x metabolismus $7 D020543
- 650 _2
- $a proteomika $x metody $7 D040901
- 650 _2
- $a biologické markery $x mozkomíšní mok $7 D015415
- 650 _2
- $a progrese nemoci $7 D018450
- 650 _2
- $a plazmatické proteiny vázající retinol $7 D054839
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Garcia-Mansfield, Krystine $u Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, 85004, USA $u Integrated Mass Spectrometry, City of Hope Comprehensive Cancer Center, Duarte, California, 19050, USA
- 700 1_
- $a Pompeiano, Antonio $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- 700 1_
- $a An, Jiyan $u Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, Arizona, 85013, USA
- 700 1_
- $a David-Dirgo, Victoria $u Integrated Mass Spectrometry, City of Hope Comprehensive Cancer Center, Duarte, California, 19050, USA
- 700 1_
- $a Sharma, Ritin $u Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, 85004, USA $u Integrated Mass Spectrometry, City of Hope Comprehensive Cancer Center, Duarte, California, 19050, USA
- 700 1_
- $a Venugopal, Vinisha $u Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, Arizona, 85013, USA
- 700 1_
- $a Halait, Harkeerat $u Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, Arizona, 85013, USA
- 700 1_
- $a Marcucci, Guido $u Department of Hematologic Malignances Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope Medical Center, Duarte, California, 91010, USA
- 700 1_
- $a Kuo, Ya-Huei $u Department of Hematologic Malignances Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope Medical Center, Duarte, California, 91010, USA
- 700 1_
- $a Uechi, Lisa $u Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope Medical Center, Duarte, California, 91010, USA
- 700 1_
- $a Rockne, Russell C $u Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope Medical Center, Duarte, California, 91010, USA
- 700 1_
- $a Pirrotte, Patrick $u Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, 85004, USA $u Integrated Mass Spectrometry, City of Hope Comprehensive Cancer Center, Duarte, California, 19050, USA
- 700 1_
- $a Bowser, Robert $u Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, Arizona, 85013, USA $1 https://orcid.org/0000000154047259
- 773 0_
- $w MED00189500 $t Annals of clinical and translational neurology $x 2328-9503 $g Roč. 10, č. 11 (2023), s. 2025-2042
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37646115 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240109 $b ABA008
- 991 __
- $a 20240213093427 $b ABA008
- 999 __
- $a ok $b bmc $g 2049466 $s 1210565
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 10 $c 11 $d 2025-2042 $e 20230830 $i 2328-9503 $m Annals of clinical and translational neurology $n Ann Clin Transl Neurol $x MED00189500
- GRA __
- $a R56 NS061867 $p NINDS NIH HHS $2 United States
- GRA __
- $a R01 NS061867 $p NINDS NIH HHS $2 United States
- GRA __
- $a P30 CA033572 $p NCI NIH HHS $2 United States
- LZP __
- $a Pubmed-20240109