• Je něco špatně v tomto záznamu ?

Representative QRS loop of the VCG record evaluation

J. Kijonka, P. Vavra, M. Penhaker, J. Kubicek

. 2023 ; 14 (-) : 1260074. [pub] 20240104

Status neindexováno Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24006070

Introduction: This study proposes an algorithm for preprocessing VCG records to obtain a representative QRS loop. Methods: The proposed algorithm uses the following methods: Digital filtering to remove noise from the signal, wavelet-based detection of ECG fiducial points and isoelectric PQ intervals, spatial alignment of QRS loops, QRS time synchronization using root mean square error minimization and ectopic QRS elimination. The representative QRS loop is calculated as the average of all QRS loops in the VCG record. The algorithm is evaluated on 161 VCG records from a database of 58 healthy control subjects, 69 patients with myocardial infarction, and 34 patients with bundle branch block. The morphologic intra-individual beat-to-beat variability rate is calculated for each VCG record. Results and Discussion: The maximum relative deviation is 12.2% for healthy control subjects, 19.3% for patients with myocardial infarction, and 17.2% for patients with bundle branch block. The performance of the algorithm is assessed by measuring the morphologic variability before and after QRS time synchronization and ectopic QRS elimination. The variability is reduced by a factor of 0.36 for healthy control subjects, 0.38 for patients with myocardial infarction, and 0.41 for patients with bundle branch block. The proposed algorithm can be used to generate a representative QRS loop for each VCG record. This representative QRS loop can be used to visualize, compare, and further process VCG records for automatic VCG record classification.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24006070
003      
CZ-PrNML
005      
20240412130924.0
007      
ta
008      
240405e20240104sz f 000 0|eng||
009      
AR
024    7_
$a 10.3389/fphys.2023.1260074 $2 doi
035    __
$a (PubMed)38239883
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Kijonka, Jan $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czechia $u Department of Surgical Studies, Faculty of Medicine of the University of Ostrava, Ostrava, Czechia
245    10
$a Representative QRS loop of the VCG record evaluation / $c J. Kijonka, P. Vavra, M. Penhaker, J. Kubicek
520    9_
$a Introduction: This study proposes an algorithm for preprocessing VCG records to obtain a representative QRS loop. Methods: The proposed algorithm uses the following methods: Digital filtering to remove noise from the signal, wavelet-based detection of ECG fiducial points and isoelectric PQ intervals, spatial alignment of QRS loops, QRS time synchronization using root mean square error minimization and ectopic QRS elimination. The representative QRS loop is calculated as the average of all QRS loops in the VCG record. The algorithm is evaluated on 161 VCG records from a database of 58 healthy control subjects, 69 patients with myocardial infarction, and 34 patients with bundle branch block. The morphologic intra-individual beat-to-beat variability rate is calculated for each VCG record. Results and Discussion: The maximum relative deviation is 12.2% for healthy control subjects, 19.3% for patients with myocardial infarction, and 17.2% for patients with bundle branch block. The performance of the algorithm is assessed by measuring the morphologic variability before and after QRS time synchronization and ectopic QRS elimination. The variability is reduced by a factor of 0.36 for healthy control subjects, 0.38 for patients with myocardial infarction, and 0.41 for patients with bundle branch block. The proposed algorithm can be used to generate a representative QRS loop for each VCG record. This representative QRS loop can be used to visualize, compare, and further process VCG records for automatic VCG record classification.
590    __
$a NEINDEXOVÁNO
655    _2
$a časopisecké články $7 D016428
700    1_
$a Vavra, Petr $u Department of Surgical Studies, Faculty of Medicine of the University of Ostrava, Ostrava, Czechia
700    1_
$a Penhaker, Marek $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czechia
700    1_
$a Kubicek, Jan $u Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czechia
773    0_
$w MED00174601 $t Frontiers in physiology $x 1664-042X $g Roč. 14 (20240104), s. 1260074
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38239883 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240405 $b ABA008
991    __
$a 20240412130917 $b ABA008
999    __
$a ok $b bmc $g 2076114 $s 1215832
BAS    __
$a 3
BAS    __
$a PreBMC-PubMed-not-MEDLINE
BMC    __
$a 2023 $b 14 $c - $d 1260074 $e 20240104 $i 1664-042X $m Frontiers in physiology $n Front. physiol. $x MED00174601
LZP    __
$a Pubmed-20240405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...