• Je něco špatně v tomto záznamu ?

Deep learning and direct sequencing of labeled RNA captures transcriptome dynamics

V. Martinek, J. Martin, C. Belair, MJ. Payea, S. Malla, P. Alexiou, M. Maragkakis

. 2024 ; 6 (3) : lqae116. [pub] 20240829

Status neindexováno Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24017916

Grantová podpora
ZIA AG000446 Intramural NIH HHS - United States

In eukaryotes, genes produce a variety of distinct RNA isoforms, each with potentially unique protein products, coding potential or regulatory signals such as poly(A) tail and nucleotide modifications. Assessing the kinetics of RNA isoform metabolism, such as transcription and decay rates, is essential for unraveling gene regulation. However, it is currently impeded by lack of methods that can differentiate between individual isoforms. Here, we introduce RNAkinet, a deep convolutional and recurrent neural network, to detect nascent RNA molecules following metabolic labeling with the nucleoside analog 5-ethynyl uridine and long-read, direct RNA sequencing with nanopores. RNAkinet processes electrical signals from nanopore sequencing directly and distinguishes nascent from pre-existing RNA molecules. Our results show that RNAkinet prediction performance generalizes in various cell types and organisms and can be used to quantify RNA isoform half-lives. RNAkinet is expected to enable the identification of the kinetic parameters of RNA isoforms and to facilitate studies of RNA metabolism and the regulatory elements that influence it.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24017916
003      
CZ-PrNML
005      
20241016081816.0
007      
ta
008      
241008s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/nargab/lqae116 $2 doi
035    __
$a (PubMed)39211330
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Martinek, Vlastimil $u Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA $u Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic $u National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic $1 https://orcid.org/0000000232041830
245    10
$a Deep learning and direct sequencing of labeled RNA captures transcriptome dynamics / $c V. Martinek, J. Martin, C. Belair, MJ. Payea, S. Malla, P. Alexiou, M. Maragkakis
520    9_
$a In eukaryotes, genes produce a variety of distinct RNA isoforms, each with potentially unique protein products, coding potential or regulatory signals such as poly(A) tail and nucleotide modifications. Assessing the kinetics of RNA isoform metabolism, such as transcription and decay rates, is essential for unraveling gene regulation. However, it is currently impeded by lack of methods that can differentiate between individual isoforms. Here, we introduce RNAkinet, a deep convolutional and recurrent neural network, to detect nascent RNA molecules following metabolic labeling with the nucleoside analog 5-ethynyl uridine and long-read, direct RNA sequencing with nanopores. RNAkinet processes electrical signals from nanopore sequencing directly and distinguishes nascent from pre-existing RNA molecules. Our results show that RNAkinet prediction performance generalizes in various cell types and organisms and can be used to quantify RNA isoform half-lives. RNAkinet is expected to enable the identification of the kinetic parameters of RNA isoforms and to facilitate studies of RNA metabolism and the regulatory elements that influence it.
590    __
$a NEINDEXOVÁNO
655    _2
$a časopisecké články $7 D016428
700    1_
$a Martin, Jessica $u Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA $u Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA $1 https://orcid.org/0009000008309289
700    1_
$a Belair, Cedric $u Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA $1 https://orcid.org/0000000340072060
700    1_
$a Payea, Matthew J $u Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA $1 https://orcid.org/0000000219604563
700    1_
$a Malla, Sulochan $u Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA $1 https://orcid.org/0000000199574597
700    1_
$a Alexiou, Panagiotis $u Centre for Molecular Medicine & Biobanking, University of Malta, MSD 2080 Msida, Malta $1 https://orcid.org/0000000334377482
700    1_
$a Maragkakis, Manolis $u Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA $1 https://orcid.org/0000000231581763
773    0_
$w MED00205378 $t NAR genomics and bioinformatics $x 2631-9268 $g Roč. 6, č. 3 (2024), s. lqae116
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39211330 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241008 $b ABA008
991    __
$a 20241016081811 $b ABA008
999    __
$a ok $b bmc $g 2196404 $s 1229867
BAS    __
$a 3
BAS    __
$a PreBMC-PubMed-not-MEDLINE
BMC    __
$a 2024 $b 6 $c 3 $d lqae116 $e 20240829 $i 2631-9268 $m NAR genomics and bioinformatics $n NAR Genom Bioinform $x MED00205378
GRA    __
$a ZIA AG000446 $p Intramural NIH HHS $2 United States
LZP    __
$a Pubmed-20241008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...