• Je něco špatně v tomto záznamu ?

Predicting progression from subjective cognitive decline to mild cognitive impairment or dementia based on brain atrophy patterns

O. Lerch, D. Ferreira, E. Stomrud, D. van Westen, P. Tideman, S. Palmqvist, N. Mattsson-Carlgren, J. Hort, O. Hansson, E. Westman

. 2024 ; 16 (1) : 153. [pub] 20240705

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc24019798

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder where pathophysiological changes begin decades before the onset of clinical symptoms. Analysis of brain atrophy patterns using structural MRI and multivariate data analysis are an effective tool in identifying patients with subjective cognitive decline (SCD) at higher risk of progression to AD dementia. Atrophy patterns obtained from models trained to classify advanced AD versus normal subjects, may not be optimal for subjects at an early stage, like SCD. In this study, we compared the accuracy of the SCD progression prediction using the 'severity index' generated using a standard classification model trained on patients with AD dementia versus a new model trained on β-amyloid (Aβ) positive patients with amnestic mild cognitive impairment (aMCI). METHODS: We used structural MRI data of 504 patients from the Swedish BioFINDER-1 study cohort (cognitively normal (CN), Aβ-negative = 220; SCD, Aβ positive and negative = 139; aMCI, Aβ-positive = 106; AD dementia = 39). We applied multivariate data analysis to create two predictive models trained to discriminate CN individuals from either individuals with Aβ positive aMCI or AD dementia. Models were applied to individuals with SCD to classify their atrophy patterns as either high-risk "disease-like" or low-risk "CN-like". Clinical trajectory and model accuracy were evaluated using 8 years of longitudinal data. RESULTS: In predicting progression from SCD to MCI or dementia, the standard, dementia-based model, reached 100% specificity but only 10.6% sensitivity, while the new, aMCI-based model, reached 72.3% sensitivity and 60.9% specificity. The aMCI-based model was superior in predicting progression from SCD to MCI or dementia, reaching a higher receiver operating characteristic area under curve (AUC = 0.72; P = 0.037) in comparison with the dementia-based model (AUC = 0.57). CONCLUSION: When predicting conversion from SCD to MCI or dementia using structural MRI data, prediction models based on individuals with milder levels of atrophy (i.e. aMCI) may offer superior clinical value compared to standard dementia-based models.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24019798
003      
CZ-PrNML
005      
20241024110933.0
007      
ta
008      
241015s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s13195-024-01517-5 $2 doi
035    __
$a (PubMed)38970077
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Lerch, Ondrej $u Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, 15006, Czech Republic. ondrej.lerch.2@ki.se $u Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, 14183, Sweden. ondrej.lerch.2@ki.se
245    10
$a Predicting progression from subjective cognitive decline to mild cognitive impairment or dementia based on brain atrophy patterns / $c O. Lerch, D. Ferreira, E. Stomrud, D. van Westen, P. Tideman, S. Palmqvist, N. Mattsson-Carlgren, J. Hort, O. Hansson, E. Westman
520    9_
$a BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder where pathophysiological changes begin decades before the onset of clinical symptoms. Analysis of brain atrophy patterns using structural MRI and multivariate data analysis are an effective tool in identifying patients with subjective cognitive decline (SCD) at higher risk of progression to AD dementia. Atrophy patterns obtained from models trained to classify advanced AD versus normal subjects, may not be optimal for subjects at an early stage, like SCD. In this study, we compared the accuracy of the SCD progression prediction using the 'severity index' generated using a standard classification model trained on patients with AD dementia versus a new model trained on β-amyloid (Aβ) positive patients with amnestic mild cognitive impairment (aMCI). METHODS: We used structural MRI data of 504 patients from the Swedish BioFINDER-1 study cohort (cognitively normal (CN), Aβ-negative = 220; SCD, Aβ positive and negative = 139; aMCI, Aβ-positive = 106; AD dementia = 39). We applied multivariate data analysis to create two predictive models trained to discriminate CN individuals from either individuals with Aβ positive aMCI or AD dementia. Models were applied to individuals with SCD to classify their atrophy patterns as either high-risk "disease-like" or low-risk "CN-like". Clinical trajectory and model accuracy were evaluated using 8 years of longitudinal data. RESULTS: In predicting progression from SCD to MCI or dementia, the standard, dementia-based model, reached 100% specificity but only 10.6% sensitivity, while the new, aMCI-based model, reached 72.3% sensitivity and 60.9% specificity. The aMCI-based model was superior in predicting progression from SCD to MCI or dementia, reaching a higher receiver operating characteristic area under curve (AUC = 0.72; P = 0.037) in comparison with the dementia-based model (AUC = 0.57). CONCLUSION: When predicting conversion from SCD to MCI or dementia using structural MRI data, prediction models based on individuals with milder levels of atrophy (i.e. aMCI) may offer superior clinical value compared to standard dementia-based models.
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a ženské pohlaví $7 D005260
650    12
$a atrofie $x patologie $7 D001284
650    12
$a kognitivní dysfunkce $x diagnostické zobrazování $x patologie $x diagnóza $7 D060825
650    12
$a progrese nemoci $7 D018450
650    _2
$a senioři $7 D000368
650    12
$a magnetická rezonanční tomografie $x metody $7 D008279
650    12
$a mozek $x patologie $x diagnostické zobrazování $7 D001921
650    12
$a demence $x diagnostické zobrazování $x patologie $7 D003704
650    _2
$a lidé středního věku $7 D008875
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a kohortové studie $7 D015331
650    _2
$a neuropsychologické testy $7 D009483
650    _2
$a Alzheimerova nemoc $x diagnostické zobrazování $x patologie $7 D000544
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Ferreira, Daniel $u Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, 14183, Sweden $u Department of Radiology, Mayo Clinic, Rochester, MN, 55902, USA
700    1_
$a Stomrud, Erik $u Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, 20502, Sweden $u Memory Clinic, Skåne University Hospital, Malmö, 21428, Sweden
700    1_
$a van Westen, Danielle $u Diagnostic Radiology, Institution for Clinical Sciences Lund, Lund University, Lund, 22184, Sweden
700    1_
$a Tideman, Pontus $u Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, 20502, Sweden $u Memory Clinic, Skåne University Hospital, Malmö, 21428, Sweden
700    1_
$a Palmqvist, Sebastian $u Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, 20502, Sweden $u Memory Clinic, Skåne University Hospital, Malmö, 21428, Sweden
700    1_
$a Mattsson-Carlgren, Niklas $u Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, 20502, Sweden $u Memory Clinic, Skåne University Hospital, Malmö, 21428, Sweden
700    1_
$a Hort, Jakub $u Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, 15006, Czech Republic
700    1_
$a Hansson, Oskar $u Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, 20502, Sweden $u Memory Clinic, Skåne University Hospital, Malmö, 21428, Sweden
700    1_
$a Westman, Eric $u Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, 14183, Sweden $u Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE58AF, UK
773    0_
$w MED00172451 $t Alzheimer's research & therapy $x 1758-9193 $g Roč. 16, č. 1 (2024), s. 153
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38970077 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241015 $b ABA008
991    __
$a 20241024110927 $b ABA008
999    __
$a ok $b bmc $g 2202178 $s 1231771
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 16 $c 1 $d 153 $e 20240705 $i 1758-9193 $m Alzheimer's research & therapy $n Alzheimers Res Ther $x MED00172451
LZP    __
$a Pubmed-20241015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...