-
Je něco špatně v tomto záznamu ?
Head poses and grimaces: Challenges for automated face identification algorithms
P. Urbanova, T. Goldmann, D. Cerny, M. Drahansky
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
- MeSH
- algoritmy * MeSH
- automatizované rozpoznávání obličeje * metody MeSH
- biometrická identifikace metody MeSH
- dospělí MeSH
- hlava - pohyby fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- obličej anatomie a histologie MeSH
- počítačové zpracování obrazu metody MeSH
- postura těla fyziologie MeSH
- výraz obličeje * MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
In today's biometric and commercial settings, state-of-the-art image processing relies solely on artificial intelligence and machine learning which provides a high level of accuracy. However, these principles are deeply rooted in abstract, complex "black-box systems". When applied to forensic image identification, concerns about transparency and accountability emerge. This study explores the impact of two challenging factors in automated facial identification: facial expressions and head poses. The sample comprised 3D faces with nine prototype expressions, collected from 41 participants (13 males, 28 females) of European descent aged 19.96 to 50.89 years. Pre-processing involved converting 3D models to 2D color images (256 × 256 px). Probes included a set of 9 images per individual with head poses varying by 5° in both left-to-right (yaw) and up-and-down (pitch) directions for neutral expressions. A second set of 3,610 images per individual covered viewpoints in 5° increments from -45° to 45° for head movements and different facial expressions, forming the targets. Pair-wise comparisons using ArcFace, a state-of-the-art face identification algorithm yielded 54,615,690 dissimilarity scores. Results indicate that minor head deviations in probes have minimal impact. However, the performance diminished as targets deviated from the frontal position. Right-to-left movements were less influential than up and down, with downward pitch showing less impact than upward movements. The lowest accuracy was for upward pitch at 45°. Dissimilarity scores were consistently higher for males than for females across all studied factors. The performance particularly diverged in upward movements, starting at 15°. Among tested facial expressions, happiness and contempt performed best, while disgust exhibited the lowest AUC values.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24019841
- 003
- CZ-PrNML
- 005
- 20241024111035.0
- 007
- ta
- 008
- 241015s2024 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.scijus.2024.06.002 $2 doi
- 035 __
- $a (PubMed)39025567
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Urbanova, Petra $u Department of Anthropology, Faculty of Science, Masaryk University, Czech Republic. Electronic address: urbanova@sci.muni.cz
- 245 10
- $a Head poses and grimaces: Challenges for automated face identification algorithms / $c P. Urbanova, T. Goldmann, D. Cerny, M. Drahansky
- 520 9_
- $a In today's biometric and commercial settings, state-of-the-art image processing relies solely on artificial intelligence and machine learning which provides a high level of accuracy. However, these principles are deeply rooted in abstract, complex "black-box systems". When applied to forensic image identification, concerns about transparency and accountability emerge. This study explores the impact of two challenging factors in automated facial identification: facial expressions and head poses. The sample comprised 3D faces with nine prototype expressions, collected from 41 participants (13 males, 28 females) of European descent aged 19.96 to 50.89 years. Pre-processing involved converting 3D models to 2D color images (256 × 256 px). Probes included a set of 9 images per individual with head poses varying by 5° in both left-to-right (yaw) and up-and-down (pitch) directions for neutral expressions. A second set of 3,610 images per individual covered viewpoints in 5° increments from -45° to 45° for head movements and different facial expressions, forming the targets. Pair-wise comparisons using ArcFace, a state-of-the-art face identification algorithm yielded 54,615,690 dissimilarity scores. Results indicate that minor head deviations in probes have minimal impact. However, the performance diminished as targets deviated from the frontal position. Right-to-left movements were less influential than up and down, with downward pitch showing less impact than upward movements. The lowest accuracy was for upward pitch at 45°. Dissimilarity scores were consistently higher for males than for females across all studied factors. The performance particularly diverged in upward movements, starting at 15°. Among tested facial expressions, happiness and contempt performed best, while disgust exhibited the lowest AUC values.
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 12
- $a výraz obličeje $7 D005149
- 650 _2
- $a dospělí $7 D000328
- 650 12
- $a algoritmy $7 D000465
- 650 12
- $a automatizované rozpoznávání obličeje $x metody $7 D000086762
- 650 _2
- $a mladý dospělý $7 D055815
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a zobrazování trojrozměrné $7 D021621
- 650 _2
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 _2
- $a biometrická identifikace $x metody $7 D056667
- 650 _2
- $a obličej $x anatomie a histologie $7 D005145
- 650 _2
- $a hlava - pohyby $x fyziologie $7 D019416
- 650 _2
- $a postura těla $x fyziologie $7 D011187
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Goldmann, Tomas $u Department of Intelligent Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
- 700 1_
- $a Cerny, Dominik $u Department of Anthropology, Faculty of Science, Masaryk University, Czech Republic
- 700 1_
- $a Drahansky, Martin $u Department of Anthropology, Faculty of Science, Masaryk University, Czech Republic
- 773 0_
- $w MED00181665 $t Science & justice $x 1876-4452 $g Roč. 64, č. 4 (2024), s. 421-442
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39025567 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20241015 $b ABA008
- 991 __
- $a 20241024111029 $b ABA008
- 999 __
- $a ok $b bmc $g 2202199 $s 1231814
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 64 $c 4 $d 421-442 $e 20240618 $i 1876-4452 $m Science & justice $n Sci Justice $x MED00181665
- LZP __
- $a Pubmed-20241015