• Je něco špatně v tomto záznamu ?

Head poses and grimaces: Challenges for automated face identification algorithms

P. Urbanova, T. Goldmann, D. Cerny, M. Drahansky

. 2024 ; 64 (4) : 421-442. [pub] 20240618

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24019841

In today's biometric and commercial settings, state-of-the-art image processing relies solely on artificial intelligence and machine learning which provides a high level of accuracy. However, these principles are deeply rooted in abstract, complex "black-box systems". When applied to forensic image identification, concerns about transparency and accountability emerge. This study explores the impact of two challenging factors in automated facial identification: facial expressions and head poses. The sample comprised 3D faces with nine prototype expressions, collected from 41 participants (13 males, 28 females) of European descent aged 19.96 to 50.89 years. Pre-processing involved converting 3D models to 2D color images (256 × 256 px). Probes included a set of 9 images per individual with head poses varying by 5° in both left-to-right (yaw) and up-and-down (pitch) directions for neutral expressions. A second set of 3,610 images per individual covered viewpoints in 5° increments from -45° to 45° for head movements and different facial expressions, forming the targets. Pair-wise comparisons using ArcFace, a state-of-the-art face identification algorithm yielded 54,615,690 dissimilarity scores. Results indicate that minor head deviations in probes have minimal impact. However, the performance diminished as targets deviated from the frontal position. Right-to-left movements were less influential than up and down, with downward pitch showing less impact than upward movements. The lowest accuracy was for upward pitch at 45°. Dissimilarity scores were consistently higher for males than for females across all studied factors. The performance particularly diverged in upward movements, starting at 15°. Among tested facial expressions, happiness and contempt performed best, while disgust exhibited the lowest AUC values.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24019841
003      
CZ-PrNML
005      
20241024111035.0
007      
ta
008      
241015s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.scijus.2024.06.002 $2 doi
035    __
$a (PubMed)39025567
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Urbanova, Petra $u Department of Anthropology, Faculty of Science, Masaryk University, Czech Republic. Electronic address: urbanova@sci.muni.cz
245    10
$a Head poses and grimaces: Challenges for automated face identification algorithms / $c P. Urbanova, T. Goldmann, D. Cerny, M. Drahansky
520    9_
$a In today's biometric and commercial settings, state-of-the-art image processing relies solely on artificial intelligence and machine learning which provides a high level of accuracy. However, these principles are deeply rooted in abstract, complex "black-box systems". When applied to forensic image identification, concerns about transparency and accountability emerge. This study explores the impact of two challenging factors in automated facial identification: facial expressions and head poses. The sample comprised 3D faces with nine prototype expressions, collected from 41 participants (13 males, 28 females) of European descent aged 19.96 to 50.89 years. Pre-processing involved converting 3D models to 2D color images (256 × 256 px). Probes included a set of 9 images per individual with head poses varying by 5° in both left-to-right (yaw) and up-and-down (pitch) directions for neutral expressions. A second set of 3,610 images per individual covered viewpoints in 5° increments from -45° to 45° for head movements and different facial expressions, forming the targets. Pair-wise comparisons using ArcFace, a state-of-the-art face identification algorithm yielded 54,615,690 dissimilarity scores. Results indicate that minor head deviations in probes have minimal impact. However, the performance diminished as targets deviated from the frontal position. Right-to-left movements were less influential than up and down, with downward pitch showing less impact than upward movements. The lowest accuracy was for upward pitch at 45°. Dissimilarity scores were consistently higher for males than for females across all studied factors. The performance particularly diverged in upward movements, starting at 15°. Among tested facial expressions, happiness and contempt performed best, while disgust exhibited the lowest AUC values.
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a ženské pohlaví $7 D005260
650    12
$a výraz obličeje $7 D005149
650    _2
$a dospělí $7 D000328
650    12
$a algoritmy $7 D000465
650    12
$a automatizované rozpoznávání obličeje $x metody $7 D000086762
650    _2
$a mladý dospělý $7 D055815
650    _2
$a lidé středního věku $7 D008875
650    _2
$a zobrazování trojrozměrné $7 D021621
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a biometrická identifikace $x metody $7 D056667
650    _2
$a obličej $x anatomie a histologie $7 D005145
650    _2
$a hlava - pohyby $x fyziologie $7 D019416
650    _2
$a postura těla $x fyziologie $7 D011187
655    _2
$a časopisecké články $7 D016428
700    1_
$a Goldmann, Tomas $u Department of Intelligent Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
700    1_
$a Cerny, Dominik $u Department of Anthropology, Faculty of Science, Masaryk University, Czech Republic
700    1_
$a Drahansky, Martin $u Department of Anthropology, Faculty of Science, Masaryk University, Czech Republic
773    0_
$w MED00181665 $t Science & justice $x 1876-4452 $g Roč. 64, č. 4 (2024), s. 421-442
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39025567 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241015 $b ABA008
991    __
$a 20241024111029 $b ABA008
999    __
$a ok $b bmc $g 2202199 $s 1231814
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 64 $c 4 $d 421-442 $e 20240618 $i 1876-4452 $m Science & justice $n Sci Justice $x MED00181665
LZP    __
$a Pubmed-20241015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...