Head poses and grimaces: Challenges for automated face identification algorithms?
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39025567
DOI
10.1016/j.scijus.2024.06.002
PII: S1355-0306(24)00052-2
Knihovny.cz E-zdroje
- Klíčová slova
- Automated algorithms, Facial expressions, Forensic image identification, Head pose,
- MeSH
- algoritmy * MeSH
- automatizované rozpoznávání obličeje * metody MeSH
- biometrická identifikace metody MeSH
- dospělí MeSH
- hlava - pohyby fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- obličej anatomie a histologie MeSH
- počítačové zpracování obrazu metody MeSH
- postura těla fyziologie MeSH
- výraz obličeje * MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
In today's biometric and commercial settings, state-of-the-art image processing relies solely on artificial intelligence and machine learning which provides a high level of accuracy. However, these principles are deeply rooted in abstract, complex "black-box systems". When applied to forensic image identification, concerns about transparency and accountability emerge. This study explores the impact of two challenging factors in automated facial identification: facial expressions and head poses. The sample comprised 3D faces with nine prototype expressions, collected from 41 participants (13 males, 28 females) of European descent aged 19.96 to 50.89 years. Pre-processing involved converting 3D models to 2D color images (256 × 256 px). Probes included a set of 9 images per individual with head poses varying by 5° in both left-to-right (yaw) and up-and-down (pitch) directions for neutral expressions. A second set of 3,610 images per individual covered viewpoints in 5° increments from -45° to 45° for head movements and different facial expressions, forming the targets. Pair-wise comparisons using ArcFace, a state-of-the-art face identification algorithm yielded 54,615,690 dissimilarity scores. Results indicate that minor head deviations in probes have minimal impact. However, the performance diminished as targets deviated from the frontal position. Right-to-left movements were less influential than up and down, with downward pitch showing less impact than upward movements. The lowest accuracy was for upward pitch at 45°. Dissimilarity scores were consistently higher for males than for females across all studied factors. The performance particularly diverged in upward movements, starting at 15°. Among tested facial expressions, happiness and contempt performed best, while disgust exhibited the lowest AUC values.
Citace poskytuje Crossref.org