Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Dispensability of HPF1 for cellular removal of DNA single-strand breaks

K. Hrychova, K. Burdova, Z. Polackova, D. Giamaki, B. Valtorta, J. Brazina, K. Krejcikova, B. Kuttichova, KW. Caldecott, H. Hanzlikova

. 2024 ; 52 (18) : 10986-10998. [pub] 20241014

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25003883

Grantová podpora
22-00885S Czech Science Foundation
186122 Charles University
L200522301 Czech Academy of Sciences
RVO - 68378050 institutional funding
LM2023050 MEYS
68378050-KAV-NPUI RVO CEP - Centrální evidence projektů
MR/W024128/1 Medical Research Council - United Kingdom

In response to DNA damage, the histone PARylation factor 1 (HPF1) regulates PARP1/2 activity, facilitating serine ADP-ribosylation of chromatin-associated factors. While PARP1/2 are known for their role in DNA single-strand break repair (SSBR), the significance of HPF1 in this process remains unclear. Here, we investigated the impact of HPF1 deficiency on cellular survival and SSBR following exposure to various genotoxins. We found that HPF1 loss did not generally increase cellular sensitivity to agents that typically induce DNA single-strand breaks (SSBs) repaired by PARP1. SSBR kinetics in HPF1-deficient cells were largely unaffected, though its absence partially influenced the accumulation of SSB intermediates after exposure to specific genotoxins in certain cell lines, likely due to altered ADP-ribosylation of chromatin. Despite reduced serine mono-ADP-ribosylation, HPF1-deficient cells maintained robust poly-ADP-ribosylation at SSB sites, possibly reflecting PARP1 auto-poly-ADP-ribosylation at non-serine residues. Notably, poly-ADP-ribose chains were sufficient to recruit the DNA repair factor XRCC1, which may explain the relatively normal SSBR capacity in HPF1-deficient cells. These findings suggest that HPF1 and histone serine ADP-ribosylation are largely dispensable for PARP1-dependent SSBR in response to genotoxic stress, highlighting the complexity of mechanisms that maintain genomic stability and chromatin remodeling.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25003883
003      
CZ-PrNML
005      
20250206104751.0
007      
ta
008      
250121s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/nar/gkae708 $2 doi
035    __
$a (PubMed)39162207
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Hrychova, Kristyna $u Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic $u Faculty of Science, Charles University in Prague, Prague 2128 43, Czech Republic
245    10
$a Dispensability of HPF1 for cellular removal of DNA single-strand breaks / $c K. Hrychova, K. Burdova, Z. Polackova, D. Giamaki, B. Valtorta, J. Brazina, K. Krejcikova, B. Kuttichova, KW. Caldecott, H. Hanzlikova
520    9_
$a In response to DNA damage, the histone PARylation factor 1 (HPF1) regulates PARP1/2 activity, facilitating serine ADP-ribosylation of chromatin-associated factors. While PARP1/2 are known for their role in DNA single-strand break repair (SSBR), the significance of HPF1 in this process remains unclear. Here, we investigated the impact of HPF1 deficiency on cellular survival and SSBR following exposure to various genotoxins. We found that HPF1 loss did not generally increase cellular sensitivity to agents that typically induce DNA single-strand breaks (SSBs) repaired by PARP1. SSBR kinetics in HPF1-deficient cells were largely unaffected, though its absence partially influenced the accumulation of SSB intermediates after exposure to specific genotoxins in certain cell lines, likely due to altered ADP-ribosylation of chromatin. Despite reduced serine mono-ADP-ribosylation, HPF1-deficient cells maintained robust poly-ADP-ribosylation at SSB sites, possibly reflecting PARP1 auto-poly-ADP-ribosylation at non-serine residues. Notably, poly-ADP-ribose chains were sufficient to recruit the DNA repair factor XRCC1, which may explain the relatively normal SSBR capacity in HPF1-deficient cells. These findings suggest that HPF1 and histone serine ADP-ribosylation are largely dispensable for PARP1-dependent SSBR in response to genotoxic stress, highlighting the complexity of mechanisms that maintain genomic stability and chromatin remodeling.
650    _2
$a lidé $7 D006801
650    _2
$a buněčné linie $7 D002460
650    _2
$a chromatin $x metabolismus $7 D002843
650    12
$a jednořetězcové zlomy DNA $7 D053904
650    12
$a oprava DNA $7 D004260
650    _2
$a DNA vazebné proteiny $x metabolismus $x genetika $7 D004268
650    _2
$a histony $x metabolismus $7 D006657
650    _2
$a jaderné proteiny $x metabolismus $x genetika $7 D009687
650    12
$a poly(ADP-ribosa)polymerasa 1 $x metabolismus $x genetika $7 D000071137
650    _2
$a poly-ADP-ribosylace $7 D000074747
650    _2
$a poly(ADP-ribosa)polymerasy $x metabolismus $x genetika $7 D011065
650    _2
$a protein XRCC1 $x metabolismus $x genetika $7 D000076105
655    _2
$a časopisecké články $7 D016428
700    1_
$a Burdova, Kamila $u Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic
700    1_
$a Polackova, Zuzana $u Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic
700    1_
$a Giamaki, Despoina $u Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland
700    1_
$a Valtorta, Beatrice $u Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic $u Faculty of Science, Charles University in Prague, Prague 2128 43, Czech Republic
700    1_
$a Brazina, Jan $u Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
700    1_
$a Krejcikova, Katerina $u Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic
700    1_
$a Kuttichova, Barbora $u Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic
700    1_
$a Caldecott, Keith W $u Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK $1 https://orcid.org/0000000342559016
700    1_
$a Hanzlikova, Hana $u Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4142 20, Czech Republic $u Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland $1 https://orcid.org/0000000172357269 $7 xx0140321
773    0_
$w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 52, č. 18 (2024), s. 10986-10998
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39162207 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206104746 $b ABA008
999    __
$a ok $b bmc $g 2263565 $s 1239890
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 52 $c 18 $d 10986-10998 $e 20241014 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
GRA    __
$a 22-00885S $p Czech Science Foundation
GRA    __
$a 186122 $p Charles University
GRA    __
$a L200522301 $p Czech Academy of Sciences
GRA    __
$a RVO - 68378050 $p institutional funding
GRA    __
$a LM2023050 $p MEYS
GRA    __
$a 68378050-KAV-NPUI $p RVO
GRA    __
$a MR/W024128/1 $p Medical Research Council $2 United Kingdom
LZP    __
$a Pubmed-20250121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...