-
Je něco špatně v tomto záznamu ?
AnNoBrainer, An Automated Annotation of Mouse Brain Images using Deep Learning
R. Peter, P. Hrobar, J. Navratil, M. Vagenknecht, J. Soukup, K. Tsuji, NX. Barrezueta, AC. Stoll, RC. Gentzel, JA. Sugam, J. Marcus, DA. Bitton
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
ProQuest Central
od 2003-03-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2003-03-01 do Před 1 rokem
Psychology Database (ProQuest)
od 2003-03-01 do Před 1 rokem
- MeSH
- deep learning * MeSH
- mozek * diagnostické zobrazování patologie MeSH
- myši transgenní MeSH
- myši MeSH
- počítačové zpracování obrazu * metody MeSH
- reprodukovatelnost výsledků MeSH
- software normy MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Annotation of multiple regions of interest across the whole mouse brain is an indispensable process for quantitative evaluation of a multitude of study endpoints in neuroscience digital pathology. Prior experience and domain expert knowledge are the key aspects for image annotation quality and consistency. At present, image annotation is often achieved manually by certified pathologists or trained technicians, limiting the total throughput of studies performed at neuroscience digital pathology labs. It may also mean that simpler and quicker methods of examining tissue samples are used by non-pathologists, especially in the early stages of research and preclinical studies. To address these limitations and to meet the growing demand for image analysis in a pharmaceutical setting, we developed AnNoBrainer, an open-source software tool that leverages deep learning, image registration, and standard cortical brain templates to automatically annotate individual brain regions on 2D pathology slides. Application of AnNoBrainer to a published set of pathology slides from transgenic mice models of synucleinopathy revealed comparable accuracy, increased reproducibility, and a significant reduction (~ 50%) in time spent on brain annotation, quality control and labelling compared to trained scientists in pathology. Taken together, AnNoBrainer offers a rapid, accurate, and reproducible automated annotation of mouse brain images that largely meets the experts' histopathological assessment standards (> 85% of cases) and enables high-throughput image analysis workflows in digital pathology labs.
Data Science MSD Czech Republic s r o Prague Czech Republic
Global Software Development MSD Czech Republic s r o Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25004039
- 003
- CZ-PrNML
- 005
- 20250206105057.0
- 007
- ta
- 008
- 250121s2024 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s12021-024-09679-1 $2 doi
- 035 __
- $a (PubMed)39107460
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Peter, Roman $u Discovery Informatics, MSD Czech Republic s.r.o., Na Valentince 4, FIVE Building, Prague 5 - Smichov, Prague, 150 00, Czech Republic
- 245 10
- $a AnNoBrainer, An Automated Annotation of Mouse Brain Images using Deep Learning / $c R. Peter, P. Hrobar, J. Navratil, M. Vagenknecht, J. Soukup, K. Tsuji, NX. Barrezueta, AC. Stoll, RC. Gentzel, JA. Sugam, J. Marcus, DA. Bitton
- 520 9_
- $a Annotation of multiple regions of interest across the whole mouse brain is an indispensable process for quantitative evaluation of a multitude of study endpoints in neuroscience digital pathology. Prior experience and domain expert knowledge are the key aspects for image annotation quality and consistency. At present, image annotation is often achieved manually by certified pathologists or trained technicians, limiting the total throughput of studies performed at neuroscience digital pathology labs. It may also mean that simpler and quicker methods of examining tissue samples are used by non-pathologists, especially in the early stages of research and preclinical studies. To address these limitations and to meet the growing demand for image analysis in a pharmaceutical setting, we developed AnNoBrainer, an open-source software tool that leverages deep learning, image registration, and standard cortical brain templates to automatically annotate individual brain regions on 2D pathology slides. Application of AnNoBrainer to a published set of pathology slides from transgenic mice models of synucleinopathy revealed comparable accuracy, increased reproducibility, and a significant reduction (~ 50%) in time spent on brain annotation, quality control and labelling compared to trained scientists in pathology. Taken together, AnNoBrainer offers a rapid, accurate, and reproducible automated annotation of mouse brain images that largely meets the experts' histopathological assessment standards (> 85% of cases) and enables high-throughput image analysis workflows in digital pathology labs.
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a deep learning $7 D000077321
- 650 12
- $a mozek $x diagnostické zobrazování $x patologie $7 D001921
- 650 _2
- $a myši $7 D051379
- 650 12
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 _2
- $a software $x normy $7 D012984
- 650 _2
- $a myši transgenní $7 D008822
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Hrobar, Petr $u Data Science, MSD Czech Republic s.r.o., Prague, Czech Republic
- 700 1_
- $a Navratil, Josef $u Global Software Development, MSD Czech Republic s.r.o., Prague, Czech Republic
- 700 1_
- $a Vagenknecht, Martin $u Data Science, MSD Czech Republic s.r.o., Prague, Czech Republic
- 700 1_
- $a Soukup, Jindrich $u Data Science, MSD Czech Republic s.r.o., Prague, Czech Republic
- 700 1_
- $a Tsuji, Keiko $u Neuroscience Discovery Merck & Co., Inc., Rahway, NJ, USA
- 700 1_
- $a Barrezueta, Nestor X $u Neuroscience Discovery Merck & Co., Inc., Rahway, NJ, USA
- 700 1_
- $a Stoll, Anna C $u Neuroscience Discovery Merck & Co., Inc., Rahway, NJ, USA
- 700 1_
- $a Gentzel, Renee C $u Neuroscience Discovery Merck & Co., Inc., Rahway, NJ, USA
- 700 1_
- $a Sugam, Jonathan A $u Neuroscience Discovery Merck & Co., Inc., Rahway, NJ, USA
- 700 1_
- $a Marcus, Jacob $u Neuroscience Discovery Merck & Co., Inc., Rahway, NJ, USA
- 700 1_
- $a Bitton, Danny A $u Discovery Informatics, MSD Czech Republic s.r.o., Na Valentince 4, FIVE Building, Prague 5 - Smichov, Prague, 150 00, Czech Republic. danny.bitton@merck.com
- 773 0_
- $w MED00200656 $t Neuroinformatics $x 1559-0089 $g Roč. 22, č. 4 (2024), s. 719-730
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39107460 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250121 $b ABA008
- 991 __
- $a 20250206105052 $b ABA008
- 999 __
- $a ok $b bmc $g 2263654 $s 1240046
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 22 $c 4 $d 719-730 $e 20240807 $i 1559-0089 $m Neuroinformatics $n Neuroinformatics $x MED00200656
- LZP __
- $a Pubmed-20250121