Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

AnNoBrainer, An Automated Annotation of Mouse Brain Images using Deep Learning

R. Peter, P. Hrobar, J. Navratil, M. Vagenknecht, J. Soukup, K. Tsuji, NX. Barrezueta, AC. Stoll, RC. Gentzel, JA. Sugam, J. Marcus, DA. Bitton

. 2024 ; 22 (4) : 719-730. [pub] 20240807

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25004039
E-zdroje Online Plný text

NLK ProQuest Central od 2003-03-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2003-03-01 do Před 1 rokem
Psychology Database (ProQuest) od 2003-03-01 do Před 1 rokem

Annotation of multiple regions of interest across the whole mouse brain is an indispensable process for quantitative evaluation of a multitude of study endpoints in neuroscience digital pathology. Prior experience and domain expert knowledge are the key aspects for image annotation quality and consistency. At present, image annotation is often achieved manually by certified pathologists or trained technicians, limiting the total throughput of studies performed at neuroscience digital pathology labs. It may also mean that simpler and quicker methods of examining tissue samples are used by non-pathologists, especially in the early stages of research and preclinical studies. To address these limitations and to meet the growing demand for image analysis in a pharmaceutical setting, we developed AnNoBrainer, an open-source software tool that leverages deep learning, image registration, and standard cortical brain templates to automatically annotate individual brain regions on 2D pathology slides. Application of AnNoBrainer to a published set of pathology slides from transgenic mice models of synucleinopathy revealed comparable accuracy, increased reproducibility, and a significant reduction (~ 50%) in time spent on brain annotation, quality control and labelling compared to trained scientists in pathology. Taken together, AnNoBrainer offers a rapid, accurate, and reproducible automated annotation of mouse brain images that largely meets the experts' histopathological assessment standards (> 85% of cases) and enables high-throughput image analysis workflows in digital pathology labs.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25004039
003      
CZ-PrNML
005      
20250206105057.0
007      
ta
008      
250121s2024 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s12021-024-09679-1 $2 doi
035    __
$a (PubMed)39107460
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Peter, Roman $u Discovery Informatics, MSD Czech Republic s.r.o., Na Valentince 4, FIVE Building, Prague 5 - Smichov, Prague, 150 00, Czech Republic
245    10
$a AnNoBrainer, An Automated Annotation of Mouse Brain Images using Deep Learning / $c R. Peter, P. Hrobar, J. Navratil, M. Vagenknecht, J. Soukup, K. Tsuji, NX. Barrezueta, AC. Stoll, RC. Gentzel, JA. Sugam, J. Marcus, DA. Bitton
520    9_
$a Annotation of multiple regions of interest across the whole mouse brain is an indispensable process for quantitative evaluation of a multitude of study endpoints in neuroscience digital pathology. Prior experience and domain expert knowledge are the key aspects for image annotation quality and consistency. At present, image annotation is often achieved manually by certified pathologists or trained technicians, limiting the total throughput of studies performed at neuroscience digital pathology labs. It may also mean that simpler and quicker methods of examining tissue samples are used by non-pathologists, especially in the early stages of research and preclinical studies. To address these limitations and to meet the growing demand for image analysis in a pharmaceutical setting, we developed AnNoBrainer, an open-source software tool that leverages deep learning, image registration, and standard cortical brain templates to automatically annotate individual brain regions on 2D pathology slides. Application of AnNoBrainer to a published set of pathology slides from transgenic mice models of synucleinopathy revealed comparable accuracy, increased reproducibility, and a significant reduction (~ 50%) in time spent on brain annotation, quality control and labelling compared to trained scientists in pathology. Taken together, AnNoBrainer offers a rapid, accurate, and reproducible automated annotation of mouse brain images that largely meets the experts' histopathological assessment standards (> 85% of cases) and enables high-throughput image analysis workflows in digital pathology labs.
650    _2
$a zvířata $7 D000818
650    12
$a deep learning $7 D000077321
650    12
$a mozek $x diagnostické zobrazování $x patologie $7 D001921
650    _2
$a myši $7 D051379
650    12
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a software $x normy $7 D012984
650    _2
$a myši transgenní $7 D008822
650    _2
$a reprodukovatelnost výsledků $7 D015203
655    _2
$a časopisecké články $7 D016428
700    1_
$a Hrobar, Petr $u Data Science, MSD Czech Republic s.r.o., Prague, Czech Republic
700    1_
$a Navratil, Josef $u Global Software Development, MSD Czech Republic s.r.o., Prague, Czech Republic
700    1_
$a Vagenknecht, Martin $u Data Science, MSD Czech Republic s.r.o., Prague, Czech Republic
700    1_
$a Soukup, Jindrich $u Data Science, MSD Czech Republic s.r.o., Prague, Czech Republic
700    1_
$a Tsuji, Keiko $u Neuroscience Discovery Merck & Co., Inc., Rahway, NJ, USA
700    1_
$a Barrezueta, Nestor X $u Neuroscience Discovery Merck & Co., Inc., Rahway, NJ, USA
700    1_
$a Stoll, Anna C $u Neuroscience Discovery Merck & Co., Inc., Rahway, NJ, USA
700    1_
$a Gentzel, Renee C $u Neuroscience Discovery Merck & Co., Inc., Rahway, NJ, USA
700    1_
$a Sugam, Jonathan A $u Neuroscience Discovery Merck & Co., Inc., Rahway, NJ, USA
700    1_
$a Marcus, Jacob $u Neuroscience Discovery Merck & Co., Inc., Rahway, NJ, USA
700    1_
$a Bitton, Danny A $u Discovery Informatics, MSD Czech Republic s.r.o., Na Valentince 4, FIVE Building, Prague 5 - Smichov, Prague, 150 00, Czech Republic. danny.bitton@merck.com
773    0_
$w MED00200656 $t Neuroinformatics $x 1559-0089 $g Roč. 22, č. 4 (2024), s. 719-730
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39107460 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206105052 $b ABA008
999    __
$a ok $b bmc $g 2263654 $s 1240046
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 22 $c 4 $d 719-730 $e 20240807 $i 1559-0089 $m Neuroinformatics $n Neuroinformatics $x MED00200656
LZP    __
$a Pubmed-20250121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...