• Je něco špatně v tomto záznamu ?

Transduction enhancing EF-C peptide nanofibrils are endocytosed by macropinocytosis and subsequently degraded

L. Rauch-Wirth, D. Schütz, R. Groß, S. Rode, B. Glocker, JA. Müller, P. Walther, C. Read, J. Münch

. 2025 ; 317 (-) : 123044. [pub] 20241225

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25009273

Retroviral gene transfer is the preferred method for stable, long-term integration of genetic material into cellular genomes, commonly used to generate chimeric antigen receptor (CAR)-T cells designed to target tumor antigens. However, the efficiency of retroviral gene transfer is often limited by low transduction rates due to low vector titers and electrostatic repulsion between viral particles and cellular membranes. To overcome these limitations, peptide nanofibrils (PNFs) can be applied as transduction enhancers. Among these, PNFs derived from the 12-mer peptide EF-C are well-investigated and commercially available. EF-C PNFs enhance transduction by forming EF-C PNFs/virus complexes that overcome electrostatic repulsion through their polycationic surface and interaction with cellular protrusions. However, the safe application of PNFs as transduction enhancers in gene therapeutic applications requires a fundamental understanding of their transduction-enhancing mechanisms, uptake, and degradation. In this study, we demonstrate that EF-C PNFs induce plasma membrane invaginations, increasing the membrane surface for viral attachment and reducing the distance to the nuclear membrane, thereby facilitating viral entry and transport to the nucleus. Furthermore, we identified macropinocytosis as the main entry pathway for EF-C PNFs and their subsequent degradation by lysosomal peptidases. The lysosomal degradation of EF-C PNFs prevents their accumulation as amyloid deposits, mitigating potential side effects and supporting their safe use in clinical applications.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25009273
003      
CZ-PrNML
005      
20250429134515.0
007      
ta
008      
250415e20241225ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.biomaterials.2024.123044 $2 doi
035    __
$a (PubMed)39754968
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Rauch-Wirth, Lena $u Institute of Molecular Virology, Ulm University Medical Center, Ulm, 89081, Germany
245    10
$a Transduction enhancing EF-C peptide nanofibrils are endocytosed by macropinocytosis and subsequently degraded / $c L. Rauch-Wirth, D. Schütz, R. Groß, S. Rode, B. Glocker, JA. Müller, P. Walther, C. Read, J. Münch
520    9_
$a Retroviral gene transfer is the preferred method for stable, long-term integration of genetic material into cellular genomes, commonly used to generate chimeric antigen receptor (CAR)-T cells designed to target tumor antigens. However, the efficiency of retroviral gene transfer is often limited by low transduction rates due to low vector titers and electrostatic repulsion between viral particles and cellular membranes. To overcome these limitations, peptide nanofibrils (PNFs) can be applied as transduction enhancers. Among these, PNFs derived from the 12-mer peptide EF-C are well-investigated and commercially available. EF-C PNFs enhance transduction by forming EF-C PNFs/virus complexes that overcome electrostatic repulsion through their polycationic surface and interaction with cellular protrusions. However, the safe application of PNFs as transduction enhancers in gene therapeutic applications requires a fundamental understanding of their transduction-enhancing mechanisms, uptake, and degradation. In this study, we demonstrate that EF-C PNFs induce plasma membrane invaginations, increasing the membrane surface for viral attachment and reducing the distance to the nuclear membrane, thereby facilitating viral entry and transport to the nucleus. Furthermore, we identified macropinocytosis as the main entry pathway for EF-C PNFs and their subsequent degradation by lysosomal peptidases. The lysosomal degradation of EF-C PNFs prevents their accumulation as amyloid deposits, mitigating potential side effects and supporting their safe use in clinical applications.
650    12
$a pinocytóza $7 D010873
650    _2
$a lidé $7 D006801
650    12
$a nanovlákna $x chemie $7 D057139
650    12
$a peptidy $x chemie $x metabolismus $7 D010455
650    _2
$a zvířata $7 D000818
650    _2
$a transdukce genetická $x metody $7 D014161
650    _2
$a endocytóza $7 D004705
650    _2
$a HEK293 buňky $7 D057809
650    _2
$a myši $7 D051379
655    _2
$a časopisecké články $7 D016428
700    1_
$a Schütz, Desiree $u Institute of Molecular Virology, Ulm University Medical Center, Ulm, 89081, Germany
700    1_
$a Groß, Rüdiger $u Institute of Molecular Virology, Ulm University Medical Center, Ulm, 89081, Germany
700    1_
$a Rode, Sascha $u Institute of Molecular Virology, Ulm University Medical Center, Ulm, 89081, Germany
700    1_
$a Glocker, Bernhard $u Central Facility for Electron Microscopy, Ulm University, Ulm, 89081, Germany; Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, 37005, Czech Republic
700    1_
$a Müller, Janis A $u Institute of Molecular Virology, Ulm University Medical Center, Ulm, 89081, Germany; Institute of Virology, Philipps University Marburg, Marburg, 35043, Germany
700    1_
$a Walther, Paul $u Central Facility for Electron Microscopy, Ulm University, Ulm, 89081, Germany
700    1_
$a Read, Clarissa $u Central Facility for Electron Microscopy, Ulm University, Ulm, 89081, Germany
700    1_
$a Münch, Jan $u Institute of Molecular Virology, Ulm University Medical Center, Ulm, 89081, Germany. Electronic address: jan.muench@uni-ulm.de
773    0_
$w MED00000753 $t Biomaterials $x 1878-5905 $g Roč. 317 (20241225), s. 123044
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39754968 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429134510 $b ABA008
999    __
$a ok $b bmc $g 2310952 $s 1246354
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 317 $c - $d 123044 $e 20241225 $i 1878-5905 $m Biomaterials $n Biomaterials $x MED00000753
LZP    __
$a Pubmed-20250415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...