-
Something wrong with this record ?
Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery
M. Paloncýová, M. Valério, RN. Dos Santos, P. Kührová, M. Šrejber, P. Čechová, DA. Dobchev, A. Balsubramani, P. Banáš, V. Agarwal, PCT. Souza, M. Otyepka
Language English Country United States
Document type Journal Article, Review
- MeSH
- Pharmaceutical Preparations chemistry MeSH
- Drug Delivery Systems methods MeSH
- Humans MeSH
- Lipids * chemistry MeSH
- Nanoparticles chemistry MeSH
- Drug Carriers chemistry MeSH
- Computer Simulation MeSH
- Molecular Dynamics Simulation * MeSH
- Machine Learning MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Lipid-mediated delivery of active pharmaceutical ingredients (API) opened new possibilities in advanced therapies. By encapsulating an API into a lipid nanocarrier (LNC), one can safely deliver APIs not soluble in water, those with otherwise strong adverse effects, or very fragile ones such as nucleic acids. However, for the rational design of LNCs, a detailed understanding of the composition-structure-function relationships is missing. This review presents currently available computational methods for LNC investigation, screening, and design. The state-of-the-art physics-based approaches are described, with the focus on molecular dynamics simulations in all-atom and coarse-grained resolution. Their strengths and weaknesses are discussed, highlighting the aspects necessary for obtaining reliable results in the simulations. Furthermore, a machine learning, i.e., data-based learning, approach to the design of lipid-mediated API delivery is introduced. The data produced by the experimental and theoretical approaches provide valuable insights. Processing these data can help optimize the design of LNCs for better performance. In the final section of this Review, state-of-the-art of computer simulations of LNCs are reviewed, specifically addressing the compatibility of experimental and computational insights.
mRNA Center of Excellence Sanofi 69280 Marcy l'Étoile France
mRNA Center of Excellence Sanofi Waltham Massachusetts 02451 United States
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25009582
- 003
- CZ-PrNML
- 005
- 20250429135000.0
- 007
- ta
- 008
- 250415s2025 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1021/acs.molpharmaceut.4c00744 $2 doi
- 035 __
- $a (PubMed)39879096
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Paloncýová, Markéta $u Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic $1 https://orcid.org/0000000268117761
- 245 10
- $a Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery / $c M. Paloncýová, M. Valério, RN. Dos Santos, P. Kührová, M. Šrejber, P. Čechová, DA. Dobchev, A. Balsubramani, P. Banáš, V. Agarwal, PCT. Souza, M. Otyepka
- 520 9_
- $a Lipid-mediated delivery of active pharmaceutical ingredients (API) opened new possibilities in advanced therapies. By encapsulating an API into a lipid nanocarrier (LNC), one can safely deliver APIs not soluble in water, those with otherwise strong adverse effects, or very fragile ones such as nucleic acids. However, for the rational design of LNCs, a detailed understanding of the composition-structure-function relationships is missing. This review presents currently available computational methods for LNC investigation, screening, and design. The state-of-the-art physics-based approaches are described, with the focus on molecular dynamics simulations in all-atom and coarse-grained resolution. Their strengths and weaknesses are discussed, highlighting the aspects necessary for obtaining reliable results in the simulations. Furthermore, a machine learning, i.e., data-based learning, approach to the design of lipid-mediated API delivery is introduced. The data produced by the experimental and theoretical approaches provide valuable insights. Processing these data can help optimize the design of LNCs for better performance. In the final section of this Review, state-of-the-art of computer simulations of LNCs are reviewed, specifically addressing the compatibility of experimental and computational insights.
- 650 12
- $a lipidy $x chemie $7 D008055
- 650 12
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a nanočástice $x chemie $7 D053758
- 650 _2
- $a lékové transportní systémy $x metody $7 D016503
- 650 _2
- $a nosiče léků $x chemie $7 D004337
- 650 _2
- $a léčivé přípravky $x chemie $7 D004364
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačová simulace $7 D003198
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Valério, Mariana $u Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France $u Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France $1 https://orcid.org/0000000173400134
- 700 1_
- $a Dos Santos, Ricardo Nascimento $u mRNA Center of Excellence, Sanofi, 69280 Marcy-l'Étoile, France
- 700 1_
- $a Kührová, Petra $u Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic $1 https://orcid.org/0000000315935282
- 700 1_
- $a Šrejber, Martin $u Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic $1 https://orcid.org/0000000195562978
- 700 1_
- $a Čechová, Petra $u Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic $1 https://orcid.org/0000000250696398
- 700 1_
- $a Dobchev, Dimitar A $u mRNA Center of Excellence, Sanofi, 69280 Marcy-l'Étoile, France
- 700 1_
- $a Balsubramani, Akshay $u mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, United States
- 700 1_
- $a Banáš, Pavel $u Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic $1 https://orcid.org/0000000271378225 $7 mzk2013786194
- 700 1_
- $a Agarwal, Vikram $u mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, United States
- 700 1_
- $a Souza, Paulo C T $u Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France $u Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France $1 https://orcid.org/0000000306601301
- 700 1_
- $a Otyepka, Michal $u Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic $u IT4Innovations, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic $1 https://orcid.org/0000000210665677 $7 mzk2004257598
- 773 0_
- $w MED00008279 $t Molecular pharmaceutics $x 1543-8392 $g Roč. 22, č. 3 (2025), s. 1110-1141
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39879096 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250415 $b ABA008
- 991 __
- $a 20250429134956 $b ABA008
- 999 __
- $a ok $b bmc $g 2311143 $s 1246663
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 22 $c 3 $d 1110-1141 $e 20250129 $i 1543-8392 $m Molecular pharmaceutics $n Mol Pharm $x MED00008279
- LZP __
- $a Pubmed-20250415