-
Je něco špatně v tomto záznamu ?
Proton Beam Therapy for Pancreatic Tumors: A Consensus Statement from the Particle Therapy Cooperative Group Gastrointestinal Subcommittee
AM. Chhabra, RA. Amos, CB. Simone, A. Kaiser, LA. Perles, H. Giap, CL. Hallemeier, JE. Johnson, H. Lin, AJ. Wroe, ES. Diffenderfer, JA. Wolfgang, H. Sakurai, HM. Lu, TS. Hong, EJ. Koay, K. Terashima, P. Vitek, WG. Rule, SJ. Apisarnthanarax, SN....
Jazyk angličtina Země Spojené státy americké
Typ dokumentu konsensus - konference, časopisecké články
- MeSH
- celková dávka radioterapie MeSH
- čtyřrozměrná počítačová tomografie MeSH
- dýchání MeSH
- imobilizace metody MeSH
- konsensus MeSH
- kritické orgány * diagnostické zobrazování účinky záření MeSH
- lidé MeSH
- nádory slinivky břišní * radioterapie diagnostické zobrazování MeSH
- plánování radioterapie pomocí počítače metody MeSH
- pohyb vnitřních orgánů MeSH
- pohyb MeSH
- protonová terapie * metody škodlivé účinky normy MeSH
- radiační poranění prevence a kontrola MeSH
- radioterapie řízená obrazem metody MeSH
- žaludek diagnostické zobrazování MeSH
- zaměřovací značky pro radioterapii MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- konsensus - konference MeSH
Radiation therapy manages pancreatic cancer in various settings; however, the proximity of gastrointestinal (GI) luminal organs at risk (OARs) poses challenges to conventional radiation therapy. Proton beam therapy (PBT) may reduce toxicities compared to photon therapy. This consensus statement summarizes PBT's safe and optimal delivery for pancreatic tumors. Our group has specific expertise using PBT for GI indications and has developed expert recommendations for treating pancreatic tumors with PBT. Computed tomography (CT) simulation: Patients should be simulated supine (arms above head) with custom upper body immobilization. For stomach/duodenum filling consistency, patients should restrict oral intake within 3 hours before simulation/treatments. Fiducial markers may be implanted for image guidance; however, their design and composition require scrutiny. The reconstruction field-of-view should encompass all immobilization devices at the target level (CT slice thickness 2-3 mm). Four-dimensional CT should quantify respiratory motion and guide motion mitigation. Respiratory gating is recommended when motion affects OAR sparing or reduces target coverage. Treatment planning: Beam-angle selection factors include priority OAR-dose minimization, water-equivalent-thickness stability along the beam path, and enhanced relative biological effect consideration due to the increased linear energy transfer at the proton beam end-of-range. Posterior and right-lateral beam angles that avoid traversing GI luminal structures are preferred (minimizing dosimetric impacts of variable anatomies). Pencil beam scanning techniques should use robust optimization. Single-field optimization is preferable to increase robustness, but if OAR constraints cannot be met, multifield optimization may be used. Treatment delivery: Volumetric image guidance should be used daily. CT scans should be acquired ad hoc as necessary (at minimum every other week) to assess the dosimetric impacts of anatomy changes. Adaptive replanning should be performed as required. Our group has developed recommendations for delivering PBT to safely and effectively manage pancreatic tumors.
Department of GI Radiation Oncology MD Anderson Cancer Center Houston Texas
Department of Radiation Oncology Hefei Ion Medical Center Hefei Anhui People's Republic of China
Department of Radiation Oncology Massachusetts General Hospital Boston Massachusetts
Department of Radiation Oncology Mayo Clinic Phoenix Arizona
Department of Radiation Oncology Mayo Clinic Rochester Minnesota
Department of Radiation Oncology Miami Cancer Institute Miami Florida
Department of Radiation Oncology New York Proton Center New York New York
Department of Radiation Oncology OSF HealthCare Cancer Institute Peoria IL
Department of Radiation Oncology Proton Therapy Center Czech Prague Czech Republic
Department of Radiation Oncology University of Florida College of Medicine Jacksonville Florida
Department of Radiation Oncology University of Maryland Medical System Baltimore Maryland
Department of Radiation Oncology University of Tsukuba Faculty of Medicine Tsukuba Japan
Department of Radiation Oncology UT Southwestern Dallas Texas
Department of Radiation Physics MD Anderson Cancer Center Houston Texas
Department of Radiology Hyogo Ion Beam Medical Center Tatsuno Japan
Depatment of Radiation Oncology University of Washington Seattle Washington
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25015976
- 003
- CZ-PrNML
- 005
- 20250731091413.0
- 007
- ta
- 008
- 250708s2025 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.ijrobp.2024.12.020 $2 doi
- 035 __
- $a (PubMed)39761799
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Chhabra, Arpit M $u Department of Radiation Oncology, New York Proton Center, New York, New York. Electronic address: achhabra@nyproton.com
- 245 10
- $a Proton Beam Therapy for Pancreatic Tumors: A Consensus Statement from the Particle Therapy Cooperative Group Gastrointestinal Subcommittee / $c AM. Chhabra, RA. Amos, CB. Simone, A. Kaiser, LA. Perles, H. Giap, CL. Hallemeier, JE. Johnson, H. Lin, AJ. Wroe, ES. Diffenderfer, JA. Wolfgang, H. Sakurai, HM. Lu, TS. Hong, EJ. Koay, K. Terashima, P. Vitek, WG. Rule, SJ. Apisarnthanarax, SN. Badiyan, JK. Molitoris, M. Chuong, RC. Nichols
- 520 9_
- $a Radiation therapy manages pancreatic cancer in various settings; however, the proximity of gastrointestinal (GI) luminal organs at risk (OARs) poses challenges to conventional radiation therapy. Proton beam therapy (PBT) may reduce toxicities compared to photon therapy. This consensus statement summarizes PBT's safe and optimal delivery for pancreatic tumors. Our group has specific expertise using PBT for GI indications and has developed expert recommendations for treating pancreatic tumors with PBT. Computed tomography (CT) simulation: Patients should be simulated supine (arms above head) with custom upper body immobilization. For stomach/duodenum filling consistency, patients should restrict oral intake within 3 hours before simulation/treatments. Fiducial markers may be implanted for image guidance; however, their design and composition require scrutiny. The reconstruction field-of-view should encompass all immobilization devices at the target level (CT slice thickness 2-3 mm). Four-dimensional CT should quantify respiratory motion and guide motion mitigation. Respiratory gating is recommended when motion affects OAR sparing or reduces target coverage. Treatment planning: Beam-angle selection factors include priority OAR-dose minimization, water-equivalent-thickness stability along the beam path, and enhanced relative biological effect consideration due to the increased linear energy transfer at the proton beam end-of-range. Posterior and right-lateral beam angles that avoid traversing GI luminal structures are preferred (minimizing dosimetric impacts of variable anatomies). Pencil beam scanning techniques should use robust optimization. Single-field optimization is preferable to increase robustness, but if OAR constraints cannot be met, multifield optimization may be used. Treatment delivery: Volumetric image guidance should be used daily. CT scans should be acquired ad hoc as necessary (at minimum every other week) to assess the dosimetric impacts of anatomy changes. Adaptive replanning should be performed as required. Our group has developed recommendations for delivering PBT to safely and effectively manage pancreatic tumors.
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a konsensus $7 D032921
- 650 _2
- $a zaměřovací značky pro radioterapii $7 D057918
- 650 _2
- $a čtyřrozměrná počítačová tomografie $7 D056973
- 650 _2
- $a imobilizace $x metody $7 D007103
- 650 _2
- $a pohyb $7 D009068
- 650 _2
- $a pohyb vnitřních orgánů $7 D000075530
- 650 12
- $a kritické orgány $x diagnostické zobrazování $x účinky záření $7 D058958
- 650 12
- $a nádory slinivky břišní $x radioterapie $x diagnostické zobrazování $7 D010190
- 650 12
- $a protonová terapie $x metody $x škodlivé účinky $x normy $7 D061766
- 650 _2
- $a radiační poranění $x prevence a kontrola $7 D011832
- 650 _2
- $a celková dávka radioterapie $7 D011879
- 650 _2
- $a plánování radioterapie pomocí počítače $x metody $7 D011880
- 650 _2
- $a radioterapie řízená obrazem $x metody $7 D061089
- 650 _2
- $a dýchání $7 D012119
- 650 _2
- $a žaludek $x diagnostické zobrazování $7 D013270
- 655 _2
- $a konsensus - konference $7 D016446
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Amos, Richard A $u Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- 700 1_
- $a Simone, Charles B $u Department of Radiation Oncology, New York Proton Center, New York, New York
- 700 1_
- $a Kaiser, Adeel $u Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
- 700 1_
- $a Perles, Luis A $u Department of Radiation Physics, MD Anderson Cancer Center, Houston, Texas
- 700 1_
- $a Giap, Huan $u Department of Radiation Oncology, OSF HealthCare Cancer Institute, Peoria, IL
- 700 1_
- $a Hallemeier, Christopher L $u Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
- 700 1_
- $a Johnson, Jedediah E $u Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
- 700 1_
- $a Lin, Haibo $u Department of Radiation Oncology, New York Proton Center, New York, New York
- 700 1_
- $a Wroe, Andrew J $u Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
- 700 1_
- $a Diffenderfer, Eric S $u Department of Radiation Oncology, University of Pennsylvania Perelmen School of Medicine, Philadelphia, Pennsylvania
- 700 1_
- $a Wolfgang, John A $u Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- 700 1_
- $a Sakurai, Hideyuki $u Department of Radiation Oncology, University of Tsukuba Faculty of Medicine, Tsukuba, Japan
- 700 1_
- $a Lu, Hsiao-Ming $u Department of Radiation Oncology, Hefei Ion Medical Center, Hefei, Anhui, People's Republic of China
- 700 1_
- $a Hong, Theodore S $u Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- 700 1_
- $a Koay, Eugene J $u Department of GI Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
- 700 1_
- $a Terashima, Kazuki $u Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
- 700 1_
- $a Vitek, Pavel $u Department of Radiation Oncology, Proton Therapy Center Czech, Prague, Czech Republic
- 700 1_
- $a Rule, William G $u Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
- 700 1_
- $a Apisarnthanarax, Smith Jim $u Depatment of Radiation Oncology, University of Washington, Seattle, Washington
- 700 1_
- $a Badiyan, Shahed N $u Department of Radiation Oncology, UT Southwestern, Dallas, Texas
- 700 1_
- $a Molitoris, Jason K $u Department of Radiation Oncology, University of Maryland Medical System, Baltimore, Maryland
- 700 1_
- $a Chuong, Michael $u Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
- 700 1_
- $a Nichols, Romaine C $u Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
- 773 0_
- $w MED00002371 $t International journal of radiation oncology, biology, physics $x 1879-355X $g Roč. 122, č. 1 (2025), s. 19-30
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39761799 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250708 $b ABA008
- 991 __
- $a 20250731091408 $b ABA008
- 999 __
- $a ok $b bmc $g 2366670 $s 1253101
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 122 $c 1 $d 19-30 $e 20250105 $i 1879-355X $m International journal of radiation oncology, biology, physics $n Int J Radiat Oncol Biol Phys $x MED00002371
- LZP __
- $a Pubmed-20250708