-
Je něco špatně v tomto záznamu ?
Existence of Optimal Control for Dirichlet Boundary Optimization in a Phase Field Problem
Status minimální Jazyk angličtina
Typ dokumentu časopisecké články
Grantová podpora
NV19-08-00071
MZ0
CEP - Centrální evidence projektů
- Publikační typ
- časopisecké články MeSH
AbstractPhase field modeling finds utility in various areas. In optimization theory in particular, the distributed control and Neumann boundary control of phase field models have been investigated thoroughly. Dirichlet boundary control in parabolic equations is commonly addressed using the very weak formulation or an approximation by Robin boundary conditions. In this paper, the Dirichlet boundary control for a phase field model with a non-singular potential is investigated using the Dirichlet lift technique. The corresponding weak formulation is analyzed. Energy estimates and problem-specific embedding results are provided, leading to the existence and uniqueness of the solution for the state equation. These results together show that the control to state mapping is well defined and bounded. Based on the preceding findings, the optimization problem is shown to have a solution.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25025804
- 003
- CZ-PrNML
- 005
- 20251212152540.0
- 007
- ta
- 008
- 251210s2023 ||| f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s10883-023-09642-4 $2 doi
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 100 1_
- $a Wodecki, Aleš
- 245 10
- $a Existence of Optimal Control for Dirichlet Boundary Optimization in a Phase Field Problem
- 520 9_
- $a AbstractPhase field modeling finds utility in various areas. In optimization theory in particular, the distributed control and Neumann boundary control of phase field models have been investigated thoroughly. Dirichlet boundary control in parabolic equations is commonly addressed using the very weak formulation or an approximation by Robin boundary conditions. In this paper, the Dirichlet boundary control for a phase field model with a non-singular potential is investigated using the Dirichlet lift technique. The corresponding weak formulation is analyzed. Energy estimates and problem-specific embedding results are provided, leading to the existence and uniqueness of the solution for the state equation. These results together show that the control to state mapping is well defined and bounded. Based on the preceding findings, the optimization problem is shown to have a solution.
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Balázsová, Monika
- 700 1_
- $a Strachota, Pavel $1 https://orcid.org/0000-0003-1527-8606
- 700 1_
- $a Oberhuber, Tomáš
- 773 0_
- $w def $t Journal of Dynamical and Control Systems $x 1079-2724 ; 1573-8698 $g Roč. 29, č. 4 (2023), s. 1425-1447
- 910 __
- $a ABA008 $b sig $c signa $y -
- 990 __
- $a 20251202 $b ABA008
- 999 __
- $a min $b bmc $g 2446306 $s 1264002
- BAS __
- $a 3 $a PreBMC
- BMC __
- $a 2023 $b 29 $c 4 $d 1425-1447 $e 20230214 $i 1079-2724 ; 1573-8698 $m Journal of Dynamical and Control Systems $x def
- GRA __
- $a NV19-08-00071 $p MZ0
- LZP __
- $a AZV-2023-Crossref-20251210