• Je něco špatně v tomto záznamu ?

Existence of Optimal Control for Dirichlet Boundary Optimization in a Phase Field Problem

. 2023 ; 29 (4) : 1425-1447. [pub] 20230214

Status minimální Jazyk angličtina

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25025804

Grantová podpora
NV19-08-00071 MZ0 CEP - Centrální evidence projektů

AbstractPhase field modeling finds utility in various areas. In optimization theory in particular, the distributed control and Neumann boundary control of phase field models have been investigated thoroughly. Dirichlet boundary control in parabolic equations is commonly addressed using the very weak formulation or an approximation by Robin boundary conditions. In this paper, the Dirichlet boundary control for a phase field model with a non-singular potential is investigated using the Dirichlet lift technique. The corresponding weak formulation is analyzed. Energy estimates and problem-specific embedding results are provided, leading to the existence and uniqueness of the solution for the state equation. These results together show that the control to state mapping is well defined and bounded. Based on the preceding findings, the optimization problem is shown to have a solution.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25025804
003      
CZ-PrNML
005      
20251212152540.0
007      
ta
008      
251210s2023 ||| f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s10883-023-09642-4 $2 doi
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
100    1_
$a Wodecki, Aleš
245    10
$a Existence of Optimal Control for Dirichlet Boundary Optimization in a Phase Field Problem
520    9_
$a AbstractPhase field modeling finds utility in various areas. In optimization theory in particular, the distributed control and Neumann boundary control of phase field models have been investigated thoroughly. Dirichlet boundary control in parabolic equations is commonly addressed using the very weak formulation or an approximation by Robin boundary conditions. In this paper, the Dirichlet boundary control for a phase field model with a non-singular potential is investigated using the Dirichlet lift technique. The corresponding weak formulation is analyzed. Energy estimates and problem-specific embedding results are provided, leading to the existence and uniqueness of the solution for the state equation. These results together show that the control to state mapping is well defined and bounded. Based on the preceding findings, the optimization problem is shown to have a solution.
655    _2
$a časopisecké články $7 D016428
700    1_
$a Balázsová, Monika
700    1_
$a Strachota, Pavel $1 https://orcid.org/0000-0003-1527-8606
700    1_
$a Oberhuber, Tomáš
773    0_
$w def $t Journal of Dynamical and Control Systems $x 1079-2724 ; 1573-8698 $g Roč. 29, č. 4 (2023), s. 1425-1447
910    __
$a ABA008 $b sig $c signa $y -
990    __
$a 20251202 $b ABA008
999    __
$a min $b bmc $g 2446306 $s 1264002
BAS    __
$a 3 $a PreBMC
BMC    __
$a 2023 $b 29 $c 4 $d 1425-1447 $e 20230214 $i 1079-2724 ; 1573-8698 $m Journal of Dynamical and Control Systems $x def
GRA    __
$a NV19-08-00071 $p MZ0
LZP    __
$a AZV-2023-Crossref-20251210

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...