Evidence for a sequence-directed conformation periodicity in the genomic highly repetitive DNA detectable with single-strand-specific chemical probe potassium permanganate
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
8871822
DOI
10.1007/bf02257269
Knihovny.cz E-zdroje
- MeSH
- Brassica genetika MeSH
- distamyciny MeSH
- DNA primery genetika MeSH
- DNA rostlinná chemie genetika MeSH
- jedovaté rostliny MeSH
- konformace nukleové kyseliny * MeSH
- manganistan draselný MeSH
- mapování chromozomů MeSH
- molekulární sekvence - údaje MeSH
- molekulární sondy MeSH
- polymorfismus genetický MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- sekvence nukleotidů MeSH
- tabák genetika MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- distamyciny MeSH
- DNA primery MeSH
- DNA rostlinná MeSH
- manganistan draselný MeSH
- molekulární sondy MeSH
- stallimycin MeSH Prohlížeč
A single-strand-specific chemical probe, potassium permanganate (KMnO4), was used to study the sequence-dependent conformation periodicity of tandem multicopy repetitive DNA sequences HRS60 and GRS (Nicotiana Species) at the level of single base pair and dinucleotide step. Local DNA structures, sensitive to KMnO4, revealed periodicity of 182 +/- 2 bp, equal to the length of repeat units. Permanganate-sensitive local structures were mapped to both DNA strands of genomic HRS60 sequences and were found to be linked to d(A)n tracts. These adenine tracts are located in the proximity of the intrinsically curved domains. Distamycin A increased reactivity of the DNA but decreased the specificity of DNA cleavage. Similar conformation periodicity has been detected also in the 'canrep' family of repeats (Brassica species). All studied repetitive sequences are predominantly located in the constitutive heterochromatin. We discuss the role of conformation periodicities in relation to a structural code for nucleosome phasing at tandem arrays of DNA repeats.
Zobrazit více v PubMed
CRC Crit Rev Biochem. 1985;19(2):89-106 PubMed
FEBS Lett. 1992 Apr 6;300(3):268-70 PubMed
Nucleic Acids Res. 1985 Jul 11;13(13):4825-35 PubMed
Nucleic Acids Res. 1993 Feb 25;21(4):1025-9 PubMed
Mol Gen Genet. 1993 Aug;240(2):159-69 PubMed
FEBS Lett. 1994 Oct 24;353(3):309-11 PubMed
Biochim Biophys Acta. 1992 Jun 15;1131(2):125-32 PubMed
Biochemistry. 1993 Aug 24;32(33):8403-10 PubMed
Chromosome Res. 1995 Jun;3(4):245-54 PubMed
Anal Biochem. 1990 Mar;185(2):230-4 PubMed
Science. 1992 Jan 10;255(5041):195-7 PubMed
Hum Genet. 1990 Mar;84(4):301-36 PubMed
Biochemistry. 1990 Jun 26;29(25):6071-81 PubMed
Nucleic Acids Res. 1989 Jun 12;17(11):4377 PubMed
Nucleic Acids Res. 1991 Oct 25;19(20):5639-44 PubMed
FEBS Lett. 1992 Dec 7;314(1):13-6 PubMed
Science. 1971 Dec 17;174(4015):1200-9 PubMed
Nucleic Acids Res. 1980 Oct 24;8(20):4613-9 PubMed
Nucleic Acids Res. 1979 Nov 24;7(6):1513-23 PubMed
Comput Appl Biosci. 1993 Aug;9(4):435-40 PubMed
Plant Mol Biol. 1993 Jan;21(2):213-24 PubMed
Planta. 1991 Jul;184(4):487-90 PubMed
Biochemistry. 1992 Aug 25;31(33):7595-9 PubMed
Nucleic Acids Res. 1993 Jul 11;21(14):3309-17 PubMed
Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2930-4 PubMed
Annu Rev Biochem. 1990;59:755-81 PubMed
J Biomol Struct Dyn. 1995 Apr;12(5):1103-19 PubMed
Theor Appl Genet. 1989 Jul;78(1):77-80 PubMed
Nature. 1984 Apr 5-11;308(5959):509-13 PubMed
Methods Enzymol. 1980;65(1):499-560 PubMed
Crit Rev Biochem Mol Biol. 1991;26(2):151-226 PubMed
Phys Rev Lett. 1994 Dec 5;73(23):3169-72 PubMed
Nucleic Acids Res. 1986 Oct 24;14 (20):8111-9 PubMed
GENBANK
X07519, X12489, X12490, X12491, X15068, X78263, X78264, X78265, X78266, X78267, X78268