Base stacking and hydrogen bonding in protonated cytosine dimer: the role of molecular ion-dipole and induction interactions
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, P.H.S.
Grantová podpora
332090
PHS HHS - United States
- MeSH
- cytosin * MeSH
- DNA chemie MeSH
- ionty MeSH
- konformace nukleové kyseliny MeSH
- matematické výpočty počítačové * MeSH
- protony MeSH
- vodíková vazba MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Názvy látek
- cytosin * MeSH
- DNA MeSH
- ionty MeSH
- protony MeSH
An ab initio quantum-chemical study of stacked and hydrogen-bonded protonated cytosine dimer has been carried out. The calculations were made using the second-order Moller-Plesset perturbational method (MP2) with a medium-sized polarized set of atomic orbitals. H-bonded as well as stacked protonated base pairs are more stable than the neutral base pairs. Two energy contributions not present in the neutral base pairs stabilize the protonated base pairs: the molecular ion - dipole interaction, and the induction interaction. The molecular ion - dipole stabilization dominates in base pairs with highly polar neutral monomers, such as the C...CH+ base pair. The induction interaction is not included in the commonly used empirical potentials, which do not reproduce the changes in intermolecular stabilization due to protonation. We demonstrate that the base stacking of several consecutive C...CH + pairs, as proposed for polycytidylic acid and i-DNA, is strongly repulsive. We also show that the intermolecular interactions strongly prefer protonation of adenine in protonated adenine-cytosine pairs.
Citace poskytuje Crossref.org
Molecular dynamics simulations and their application to four-stranded DNA