In vitro effects of arachidonic and L-glutamic acids on the high-affinity choline transport in rat hippocampus
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Biological Transport drug effects MeSH
- Choline pharmacokinetics MeSH
- Hemicholinium 3 metabolism MeSH
- Hippocampus cytology drug effects metabolism MeSH
- Rats MeSH
- Arachidonic Acid metabolism pharmacology MeSH
- Glutamic Acid pharmacology MeSH
- Linear Models MeSH
- Neurons drug effects metabolism MeSH
- Rats, Wistar MeSH
- In Vitro Techniques MeSH
- Binding Sites MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Choline MeSH
- Hemicholinium 3 MeSH
- Arachidonic Acid MeSH
- Glutamic Acid MeSH
A second messenger role for arachidonic acid (AA) in the regulation of the high-affinity choline uptake (HACU) was suggested. It was reported that micromolar concentrations of AA applied in vitro decreased the HACU values and increased the specific binding of [3H]hemicholinium-3 ([3H]HCh-3). It was published that L-glutamic acid (GA) applied in vivo produced a fall in the HACU values. In addition, GA liberates free AA. In this study, an ability of GA to influence in vitro the activity of presynaptic cholinergic nerve terminals via its effect on the release of AA is investigated in hippocampal synaptosomes of young Wistar rats. Millimolar concentrations of GA decrease both the high- and low-affinity choline uptake, the specific as well as nonspecific binding of [3H]HCh-3 and the activity of Na+, K(+)-ATPase. Kinetic analysis (Lineweaver-Burk and Scatchard plots) reveals a change in Vmax and Bmax, but not in KM and KD. It appears very likely that under normal conditions GA applied in vitro is not able to change markedly the choline transport via its effect on the release of AA. Results confirm the hypothesis about an indirect inhibitory role for glutamatergic receptors on cholinergic cells.
See more in PubMed
Neuropharmacology. 1988 Dec;27(12):1301-8 PubMed
Neuroscience. 1990;38(3):571-7 PubMed
Ann Med. 1991 Dec;23(6):675-9 PubMed
Eur J Pharmacol. 1987 Mar 3;135(1):35-40 PubMed
J Neurochem. 1985 Jan;44(1):11-24 PubMed
Lipids. 1970 May;5(5):494-6 PubMed
Neurosci Biobehav Rev. 1992 Spring;16(1):13-24 PubMed
Can J Physiol Pharmacol. 1994 Dec;72(12):1473-82 PubMed
Exp Gerontol. 1995 Nov-Dec;30(6):645-57 PubMed
J Neurosci. 1990 Jan;10 (1):62-72 PubMed
Br J Pharmacol. 1981 Nov;74(3):525-31 PubMed
Pharmacol Biochem Behav. 1994 Nov;49(3):689-99 PubMed
Eur J Neurosci. 1995 May 1;7(5):1034-49 PubMed
Ann N Y Acad Sci. 1989;568:219-24 PubMed
Neuroscience. 1995 Mar;65(1):15-25 PubMed
Neuron. 1988 Oct;1(8):623-34 PubMed
J Neurochem. 1995 Jul;65(1):241-9 PubMed
J Neurosci Res. 1995 Apr 15;40(6):764-75 PubMed
J Neurochem. 1987 Apr;48(4):1178-84 PubMed
FEBS Lett. 1992 Jun 22;305(1):31-6 PubMed
Biochem Pharmacol. 1988 Nov 15;37(22):4367-73 PubMed
Arch Gerontol Geriatr. 1993 Nov-Dec;17(3):179-88 PubMed
Neurosci Lett. 1995 May 12;190(3):207-11 PubMed
J Neurochem. 1988 Apr;50(4):1309-18 PubMed
J Pharmacol Exp Ther. 1989 Jun;249(3):836-42 PubMed
Trends Pharmacol Sci. 1990 Nov;11(11):462-8 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
J Neurochem. 1993 Apr;60(4):1191-201 PubMed
Anal Biochem. 1983 Jul 1;132(1):74-81 PubMed
J Neurochem. 1994 Oct;63(4):1328-37 PubMed
Brain Res. 1982 Aug 12;245(2):307-16 PubMed
Metab Brain Dis. 1992 Jun;7(2):77-92 PubMed
J Neurochem. 1983 Feb;40(2):309-16 PubMed