Molecular and cellular mechanisms of invasion of the intestinal barrier by enteric pathogens. The paradigm of Shigella

. 1998 ; 43 (3) : 239-46.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid09717250

The pathogenesis of bacillary dysentery can be studied at different levels of integration of the cellular components that constitute the colonic mucosal barrier. We considered the interaction of Shigella flexneri in three experimental systems that provide complementary information and a scheme of events occurring in human colorectal mucosa as Shigella invasion proceeds. Interaction of S. flexneri with individual epithelial cells shows a series of events in which the bacterium, upon contact with the cell surface, releases a set of Ipa proteins (i.e. invasins) through a specialized, activable, type-III secretory apparatus (i.e. Mxi/Spa). Via a complex signaling process, these invasins cause major rearrangements of the subcortical cytoskeletal network which allow bacterial entry by a macropinocytotic event. Then the bacterium lyses its phagocytotic vacuole and initiates intracytoplasmic movement, due to polar assembly of actin filaments caused by a bacterial surface protein, IcsA. This allows very efficient colonization of the host cell cytoplasm and passage to adjacent cells via protrusions which are engulfed by a cadherin-dependent process. However, when invasive Shigella are deposited on the apical side of polarized monolayers of human colonic cells, they appear unable to invade, indicating that bacteria need to reach the subepithelial area to invade the epithelium. In this system, it has been shown that transepithelial signaling caused by apical bacteria induces adherence and transmigration of basal polymorphonuclears (PMN), thus disrupting the monolayer permeability and facilitating bacterial invasion. LPS accounts for a large part of this transepithelial signalization to PMN. Such a process could account for invasion in intestinal crypts. Finally, models of infection, such as the rabbit ligated intestinal loop show that initial bacterial entry occurs essentially via M cells of the follicular associated epithelium. It then causes apoptosis of macrophages located in the follicular dome, inducing release of IL-1 beta which, in turn, initiates inflammation, leading to destabilization of the epithelial structures as modeled above. These data can now be used to understand the mechanisms of mucosal protection against bacillary dysentery.

Zobrazit více v PubMed

Infect Immun. 1989 Mar;57(3):858-63 PubMed

J Exp Med. 1996 Mar 1;183(3):991-9 PubMed

Cell. 1993 Nov 19;75(4):641-52 PubMed

Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10544-8 PubMed

Vaccine. 1991 Jun;9(6):416-22 PubMed

Infect Immun. 1992 Oct;60(10):4088-99 PubMed

EMBO J. 1994 Nov 15;13(22):5293-302 PubMed

Infect Immun. 1983 Mar;39(3):1392-402 PubMed

Science. 1991 May 17;252(5008):934-8 PubMed

J Exp Med. 1997 Jan 20;185(2):281-92 PubMed

J Biol Chem. 1996 Sep 6;271(36):21878-85 PubMed

FEBS Lett. 1996 Dec 9;399(1-2):103-7 PubMed

Cell Motil Cytoskeleton. 1997;37(1):44-53 PubMed

EMBO J. 1997 May 15;16(10):2717-29 PubMed

EMBO J. 1996 Aug 1;15(15):3853-60 PubMed

Infect Immun. 1987 Nov;55(11):2681-8 PubMed

J Infect Dis. 1997 Feb;175(2):470-3 PubMed

Infect Immun. 1996 Jul;64(7):2474-82 PubMed

EMBO J. 1992 May;11(5):1991-9 PubMed

Proc Natl Acad Sci U S A. 1989 May;86(10):3867-71 PubMed

Trends Microbiol. 1996 Jun;4(6):220-6 PubMed

EMBO J. 1996 Jul 1;15(13):3315-21 PubMed

FEBS Lett. 1997 Jan 3;400(2):149-54 PubMed

Infect Immun. 1982 Mar;35(3):852-60 PubMed

Cell. 1994 Mar 11;76(5):829-39 PubMed

Mol Microbiol. 1992 Jun;6(12):1605-16 PubMed

Nature. 1993 Aug 12;364(6438):639-42 PubMed

Curr Opin Cell Biol. 1995 Dec;7(6):825-34 PubMed

J Exp Med. 1994 Oct 1;180(4):1307-19 PubMed

Infect Immun. 1996 Jul;64(7):2752-64 PubMed

Infect Immun. 1994 Dec;62(12):5664-8 PubMed

J Bacteriol. 1995 Apr;177(7):1719-26 PubMed

Mol Microbiol. 1995 Nov;18(3):413-23 PubMed

J Clin Invest. 1994 Sep;94(3):1328-32 PubMed

Mol Microbiol. 1994 Feb;11(4):619-27 PubMed

Infect Immun. 1996 Dec;64(12):5357-65 PubMed

J Clin Invest. 1994 Feb;93(2):633-43 PubMed

Infect Immun. 1986 Feb;51(2):461-9 PubMed

EMBO J. 1993 May;12(5):1887-95 PubMed

J Bacteriol. 1993 Sep;175(18):5899-906 PubMed

Mol Microbiol. 1992 Apr;6(7):833-41 PubMed

EMBO J. 1995 Jun 1;14(11):2471-82 PubMed

Infect Immun. 1985 Jul;49(1):164-71 PubMed

J Bacteriol. 1964 Nov;88(5):1503-18 PubMed

Mol Microbiol. 1997 Mar;23(5):1063-73 PubMed

EMBO J. 1992 May;11(5):1981-90 PubMed

J Cell Biol. 1995 Apr;129(2):367-81 PubMed

Nature. 1992 Jul 9;358(6382):167-9 PubMed

Cell. 1992 Feb 7;68(3):521-31 PubMed

Trends Microbiol. 1997 May;5(5):201-4 PubMed

Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6572-6 PubMed

Cell. 1994 Nov 4;79(3):515-25 PubMed

Cell. 1996 Mar 22;84(6):923-32 PubMed

Infect Immun. 1993 Jul;61(7):2793-802 PubMed

Infect Immun. 1997 Oct;65(10):4005-10 PubMed

J Clin Invest. 1995 Aug;96(2):884-92 PubMed

Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1254-8 PubMed

Cell. 1986 Aug 15;46(4):551-5 PubMed

Infect Immun. 1997 Feb;65(2):739-49 PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...