Molecular and cellular mechanisms of invasion of the intestinal barrier by enteric pathogens. The paradigm of Shigella
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
9717250
DOI
10.1007/bf02818608
Knihovny.cz E-zdroje
- MeSH
- bacilární dyzentérie mikrobiologie MeSH
- lidé MeSH
- Shigella patogenita fyziologie MeSH
- střevní sliznice mikrobiologie MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The pathogenesis of bacillary dysentery can be studied at different levels of integration of the cellular components that constitute the colonic mucosal barrier. We considered the interaction of Shigella flexneri in three experimental systems that provide complementary information and a scheme of events occurring in human colorectal mucosa as Shigella invasion proceeds. Interaction of S. flexneri with individual epithelial cells shows a series of events in which the bacterium, upon contact with the cell surface, releases a set of Ipa proteins (i.e. invasins) through a specialized, activable, type-III secretory apparatus (i.e. Mxi/Spa). Via a complex signaling process, these invasins cause major rearrangements of the subcortical cytoskeletal network which allow bacterial entry by a macropinocytotic event. Then the bacterium lyses its phagocytotic vacuole and initiates intracytoplasmic movement, due to polar assembly of actin filaments caused by a bacterial surface protein, IcsA. This allows very efficient colonization of the host cell cytoplasm and passage to adjacent cells via protrusions which are engulfed by a cadherin-dependent process. However, when invasive Shigella are deposited on the apical side of polarized monolayers of human colonic cells, they appear unable to invade, indicating that bacteria need to reach the subepithelial area to invade the epithelium. In this system, it has been shown that transepithelial signaling caused by apical bacteria induces adherence and transmigration of basal polymorphonuclears (PMN), thus disrupting the monolayer permeability and facilitating bacterial invasion. LPS accounts for a large part of this transepithelial signalization to PMN. Such a process could account for invasion in intestinal crypts. Finally, models of infection, such as the rabbit ligated intestinal loop show that initial bacterial entry occurs essentially via M cells of the follicular associated epithelium. It then causes apoptosis of macrophages located in the follicular dome, inducing release of IL-1 beta which, in turn, initiates inflammation, leading to destabilization of the epithelial structures as modeled above. These data can now be used to understand the mechanisms of mucosal protection against bacillary dysentery.
Zobrazit více v PubMed
Infect Immun. 1989 Mar;57(3):858-63 PubMed
J Exp Med. 1996 Mar 1;183(3):991-9 PubMed
Cell. 1993 Nov 19;75(4):641-52 PubMed
Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10544-8 PubMed
Vaccine. 1991 Jun;9(6):416-22 PubMed
Infect Immun. 1992 Oct;60(10):4088-99 PubMed
EMBO J. 1994 Nov 15;13(22):5293-302 PubMed
Infect Immun. 1983 Mar;39(3):1392-402 PubMed
Science. 1991 May 17;252(5008):934-8 PubMed
J Exp Med. 1997 Jan 20;185(2):281-92 PubMed
J Biol Chem. 1996 Sep 6;271(36):21878-85 PubMed
FEBS Lett. 1996 Dec 9;399(1-2):103-7 PubMed
Cell Motil Cytoskeleton. 1997;37(1):44-53 PubMed
EMBO J. 1997 May 15;16(10):2717-29 PubMed
EMBO J. 1996 Aug 1;15(15):3853-60 PubMed
Infect Immun. 1987 Nov;55(11):2681-8 PubMed
J Infect Dis. 1997 Feb;175(2):470-3 PubMed
Infect Immun. 1996 Jul;64(7):2474-82 PubMed
EMBO J. 1992 May;11(5):1991-9 PubMed
Proc Natl Acad Sci U S A. 1989 May;86(10):3867-71 PubMed
Trends Microbiol. 1996 Jun;4(6):220-6 PubMed
EMBO J. 1996 Jul 1;15(13):3315-21 PubMed
FEBS Lett. 1997 Jan 3;400(2):149-54 PubMed
Infect Immun. 1982 Mar;35(3):852-60 PubMed
Cell. 1994 Mar 11;76(5):829-39 PubMed
Mol Microbiol. 1992 Jun;6(12):1605-16 PubMed
Nature. 1993 Aug 12;364(6438):639-42 PubMed
Curr Opin Cell Biol. 1995 Dec;7(6):825-34 PubMed
J Exp Med. 1994 Oct 1;180(4):1307-19 PubMed
Infect Immun. 1996 Jul;64(7):2752-64 PubMed
Infect Immun. 1994 Dec;62(12):5664-8 PubMed
J Bacteriol. 1995 Apr;177(7):1719-26 PubMed
Mol Microbiol. 1995 Nov;18(3):413-23 PubMed
J Clin Invest. 1994 Sep;94(3):1328-32 PubMed
Mol Microbiol. 1994 Feb;11(4):619-27 PubMed
Infect Immun. 1996 Dec;64(12):5357-65 PubMed
J Clin Invest. 1994 Feb;93(2):633-43 PubMed
Infect Immun. 1986 Feb;51(2):461-9 PubMed
EMBO J. 1993 May;12(5):1887-95 PubMed
J Bacteriol. 1993 Sep;175(18):5899-906 PubMed
Mol Microbiol. 1992 Apr;6(7):833-41 PubMed
EMBO J. 1995 Jun 1;14(11):2471-82 PubMed
Infect Immun. 1985 Jul;49(1):164-71 PubMed
J Bacteriol. 1964 Nov;88(5):1503-18 PubMed
Mol Microbiol. 1997 Mar;23(5):1063-73 PubMed
EMBO J. 1992 May;11(5):1981-90 PubMed
J Cell Biol. 1995 Apr;129(2):367-81 PubMed
Nature. 1992 Jul 9;358(6382):167-9 PubMed
Cell. 1992 Feb 7;68(3):521-31 PubMed
Trends Microbiol. 1997 May;5(5):201-4 PubMed
Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6572-6 PubMed
Cell. 1994 Nov 4;79(3):515-25 PubMed
Cell. 1996 Mar 22;84(6):923-32 PubMed
Infect Immun. 1993 Jul;61(7):2793-802 PubMed
Infect Immun. 1997 Oct;65(10):4005-10 PubMed
J Clin Invest. 1995 Aug;96(2):884-92 PubMed
Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1254-8 PubMed
Cell. 1986 Aug 15;46(4):551-5 PubMed
Infect Immun. 1997 Feb;65(2):739-49 PubMed
A meeting of good friends: when the cell biology of prokaryotes and eukaryotes meet