Effect of transition metals on binding of p53 protein to supercoiled DNA and to consensus sequence in DNA fragments

. 1999 Jun 17 ; 18 (24) : 3617-25.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid10380883

Recently we have shown that wild-type human p53 protein binds preferentially to supercoiled (sc) DNA in vitro in both the presence and absence of the p53 consensus sequence (p53CON). This binding produces a ladder of retarded bands on an agarose gel. Using immunoblotting with the antibody DO-1, we show that the bands obtained correspond to ethidium-stained DNA, suggesting that each band of the ladder contains a DNA-p53 complex. The intensity and the number of these hands are decreased by physiological concentrations of zinc ions. At higher zinc concentrations, binding of p53 to scDNA is completely inhibited. The binding of additional zinc ions to p53 appears much weaker than the binding of the intrinsic zinc ion in the DNA binding site of the core domain. In contrast to previously published data suggesting that 100 microM zinc ions do not influence p53 binding to p53CON in a DNA oligonucleotide, we show that 5-20 microM zinc efficiently inhibits binding of p53 to p53CON in DNA fragments. We also show that relatively low concentrations of dithiothreitol but not of 2-mercaptoethanol decrease the concentration of free zinc ions, thereby preventing their inhibitory effect on binding of p53 to DNA. Nickel and cobalt ions inhibit binding of p53 to scDNA and to its consensus sequence in linear DNA fragments less efficiently than zinc; cobalt ions are least efficient, requiring >100 microM Co2+ for full inhibition of p53 binding. Modulation of binding of p53 to DNA by physiological concentrations of zinc might represent a novel pathway that regulates p53 activity in vivo.

Zobrazit více v PubMed

EMBO J. 1989 Jul;8(7):2087-94 PubMed

Bioessays. 1995 Jun;17(6):501-8 PubMed

J Mol Biol. 1993 Apr 5;230(3):966-78 PubMed

Curr Biol. 1994 Oct 1;4(10):865-75 PubMed

Biochemistry. 1990 Jun 19;29(24):5647-59 PubMed

Science. 1996 Feb 23;271(5252):1081-5 PubMed

Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3489-94 PubMed

Biochemistry. 1987 Jun 30;26(13):3759-62 PubMed

J Mol Biol. 1996 Aug 2;260(5):623-37 PubMed

Cancer Res. 1993 Apr 15;53(8):1739-42 PubMed

Genes Dev. 1996 May 1;10(9):1054-72 PubMed

Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):579-83 PubMed

Oncogene. 1996 Apr 4;12(7):1379-85 PubMed

Oncogene. 1997 Jul 10;15(2):237-44 PubMed

Mol Carcinog. 1998 Mar;21(3):205-14 PubMed

J Mol Biol. 1995 Apr 21;248(1):58-78 PubMed

Cell. 1997 Feb 7;88(3):323-31 PubMed

J Immunol Methods. 1992 Jul 6;151(1-2):237-44 PubMed

Crit Rev Biochem Mol Biol. 1991;26(2):151-226 PubMed

Biochemistry. 1995 Nov 7;34(44):14408-15 PubMed

Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10565-70 PubMed

Anal Biochem. 1976 May 7;72:248-54 PubMed

Bioessays. 1995 Nov;17(11):923-30 PubMed

Gen Pharmacol. 1994 Nov;25(7):1297-310 PubMed

Oncogene. 1995 Jan 5;10(1):27-32 PubMed

J Biol Chem. 1997 Jun 6;272(23):14842-9 PubMed

Crit Rev Biochem Mol Biol. 1991;26(5-6):475-559 PubMed

Oncogene. 1997 Oct;15(18):2201-9 PubMed

Anal Biochem. 1985 Apr;146(1):150-7 PubMed

Science. 1994 Jul 15;265(5170):346-55 PubMed

Nucleic Acids Res. 1993 Jun 11;21(11):2557-62 PubMed

Nature. 1997 Apr 10;386(6625):563 PubMed

Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14338-42 PubMed

Biochim Biophys Acta. 1994 Dec 14;1209(2):279-85 PubMed

Anal Biochem. 1972 May;47(1):203-8 PubMed

Genes Dev. 1993 Dec;7(12B):2556-64 PubMed

Nucleic Acids Res. 1997 Mar 15;25(6):1289-95 PubMed

Nat Genet. 1992 Apr;1(1):45-9 PubMed

J Biol Chem. 1997 Jun 6;272(23):14830-41 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...